{"title":"Content-based interference management for video transmission in D2D communications underlaying LTE","authors":"S. Baidya, M. Levorato","doi":"10.1109/ICCNC.2017.7876117","DOIUrl":null,"url":null,"abstract":"A novel interference management approach is proposed for modern communication scenarios, where multiple applications and networks coexist on the same channel resource. The leading principle behind the proposed approach is that the interference level should be adapted to the content being transmitted by the data links to maximize the amount of delivered information. A network setting is considered where Device-to-Device (D2D) communications underlay a Long Term Evolution (LTE) link uploading video content to the network infrastructure. For this scenario, an optimization problem is formulated aiming at the maximization of the D2D link's throughput under a constraint on the Peak Signal-to-Noise-Ratio of the video data stream. The resulting optimal policy focuses interference on specific packets within the video stream, and significantly increases the throughput achieved by the D2D link compared to an undifferentiated interference strategy. The optimal strategy is applied to a real-world video streaming application to further demonstrate the performance gain.","PeriodicalId":135028,"journal":{"name":"2017 International Conference on Computing, Networking and Communications (ICNC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Computing, Networking and Communications (ICNC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCNC.2017.7876117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
A novel interference management approach is proposed for modern communication scenarios, where multiple applications and networks coexist on the same channel resource. The leading principle behind the proposed approach is that the interference level should be adapted to the content being transmitted by the data links to maximize the amount of delivered information. A network setting is considered where Device-to-Device (D2D) communications underlay a Long Term Evolution (LTE) link uploading video content to the network infrastructure. For this scenario, an optimization problem is formulated aiming at the maximization of the D2D link's throughput under a constraint on the Peak Signal-to-Noise-Ratio of the video data stream. The resulting optimal policy focuses interference on specific packets within the video stream, and significantly increases the throughput achieved by the D2D link compared to an undifferentiated interference strategy. The optimal strategy is applied to a real-world video streaming application to further demonstrate the performance gain.