Detecting Semantic Group Activities Using Relational Clustering

A. Hoogs, S. Bush, G. Brooksby, A. Perera, M. Dausch, N. Krahnstoever
{"title":"Detecting Semantic Group Activities Using Relational Clustering","authors":"A. Hoogs, S. Bush, G. Brooksby, A. Perera, M. Dausch, N. Krahnstoever","doi":"10.1109/WMVC.2008.4544062","DOIUrl":null,"url":null,"abstract":"Existing approaches to detect modeled activities in video often require the precise specification of the number of actors or roles, or spatial constraints, or other limitations that create difficulties for generic detection of group activities. We develop an approach to detect group behaviors in video, where an arbitrary number of participants are involved. We address scene conditions with non-participating objects, an arbitrary number of instances of the behaviors of interest, and arbitrary locations for those instances. Our approach uses semantic spatio-temporal predicates to define activities, and relational clustering to identify groups of objects for which the relational predicates are mutually true over time. The algorithm handles conditions where object segmentation and tracking are highly unreliable, such as busy scenes with occluders. Results are shown for the group activities of crowd formation and dispersal on low-resolution, far-field video surveillance data.","PeriodicalId":150666,"journal":{"name":"2008 IEEE Workshop on Motion and video Computing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE Workshop on Motion and video Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WMVC.2008.4544062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Existing approaches to detect modeled activities in video often require the precise specification of the number of actors or roles, or spatial constraints, or other limitations that create difficulties for generic detection of group activities. We develop an approach to detect group behaviors in video, where an arbitrary number of participants are involved. We address scene conditions with non-participating objects, an arbitrary number of instances of the behaviors of interest, and arbitrary locations for those instances. Our approach uses semantic spatio-temporal predicates to define activities, and relational clustering to identify groups of objects for which the relational predicates are mutually true over time. The algorithm handles conditions where object segmentation and tracking are highly unreliable, such as busy scenes with occluders. Results are shown for the group activities of crowd formation and dispersal on low-resolution, far-field video surveillance data.
使用关系聚类检测语义组活动
现有的检测视频中建模活动的方法通常需要对演员或角色的数量、空间约束或其他限制进行精确的说明,这些限制会给群体活动的一般检测带来困难。我们开发了一种方法来检测视频中的群体行为,其中涉及任意数量的参与者。我们用非参与对象、任意数量的感兴趣行为实例和这些实例的任意位置来处理场景条件。我们的方法使用语义时空谓词来定义活动,并使用关系聚类来识别关系谓词随时间相互为真的对象组。该算法处理对象分割和跟踪高度不可靠的情况,例如有遮挡物的繁忙场景。在低分辨率远场视频监控数据上显示了人群形成和分散的群体活动结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信