Serial multiplier architectures over GF(2/sup n/) for elliptic curve cryptosystems

L. Batina, N. Mentens, Berna Örs, Bart. Preneel, Bart. Preneel
{"title":"Serial multiplier architectures over GF(2/sup n/) for elliptic curve cryptosystems","authors":"L. Batina, N. Mentens, Berna Örs, Bart. Preneel, Bart. Preneel","doi":"10.1109/MELCON.2004.1347047","DOIUrl":null,"url":null,"abstract":"We present an FPGA implementation of a new multiplier for binary finite fields that combines two previously known methods. The multiplier is designed for polynomial bases which allow more flexibility in hardware and is dedicated to efficient implementations of elliptic curve cryptography. An extension to a digit-serial architecture is also sketched. For the introduced architecture we also discuss resistance to side-channel attacks.","PeriodicalId":164818,"journal":{"name":"Proceedings of the 12th IEEE Mediterranean Electrotechnical Conference (IEEE Cat. No.04CH37521)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 12th IEEE Mediterranean Electrotechnical Conference (IEEE Cat. No.04CH37521)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MELCON.2004.1347047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

Abstract

We present an FPGA implementation of a new multiplier for binary finite fields that combines two previously known methods. The multiplier is designed for polynomial bases which allow more flexibility in hardware and is dedicated to efficient implementations of elliptic curve cryptography. An extension to a digit-serial architecture is also sketched. For the introduced architecture we also discuss resistance to side-channel attacks.
椭圆曲线密码系统的GF(2/sup n/)串行乘法器结构
我们提出了一个新的二进制有限域乘法器的FPGA实现,它结合了两种以前已知的方法。该乘法器是为多项式基而设计的,它在硬件上具有更大的灵活性,并致力于有效地实现椭圆曲线密码。本文还概述了数字串行体系结构的扩展。对于所介绍的架构,我们还讨论了对侧信道攻击的抵抗力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信