AI Empowered Computing Resource Allocation in Vehicular Ad-hoc NETworks

Ayat Hama Saleh, A. Anpalagan
{"title":"AI Empowered Computing Resource Allocation in Vehicular Ad-hoc NETworks","authors":"Ayat Hama Saleh, A. Anpalagan","doi":"10.1109/ICBIR54589.2022.9786437","DOIUrl":null,"url":null,"abstract":"The vehicular ad hoc network (VANET) has emerged as a heterogeneous network with no fixed infrastructure. This paper proposes an AI-empowered task offloading and computing resource allocation model which can manage the computing resources in VANET dynamically. The model is divided into two layers. First, the task offloading layer, where the Random Forest (RF) algorithm is used to determine offloading the vehicle’s computing tasks whether to the Cloud Computing (CC) server or Mobile Edge Computing (MEC) server or to be processed locally (in-vehicle computing). Second, the resource allocation layer, where the Deep Deterministic Policy Gradient (DDPG) algorithm is used to determine the computing platform again when the task is determined to be offloaded to either MEC servers or the cloud servers. To evaluate the performance of the RF classifier, we applied the model to a real-world driving trajectory dataset, and then compared the results with a different set of Machine Learning (ML) algorithms namely, K-nearest neighbour (KNN), Multilayer Perceptron (MLP) and Support Vector Machine (SVM). The results show the RF model outperformed other models in classification accuracy score of 99.83% for task offloading decision, where the KNN, MLP and SVM achieved 9S%, 94.Sl% and 90.94%, respectively. Moreover, the DDPG based resource allocation scheme converges within 150 episodes and reduced the latency cost by 85%.","PeriodicalId":216904,"journal":{"name":"2022 7th International Conference on Business and Industrial Research (ICBIR)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 7th International Conference on Business and Industrial Research (ICBIR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICBIR54589.2022.9786437","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The vehicular ad hoc network (VANET) has emerged as a heterogeneous network with no fixed infrastructure. This paper proposes an AI-empowered task offloading and computing resource allocation model which can manage the computing resources in VANET dynamically. The model is divided into two layers. First, the task offloading layer, where the Random Forest (RF) algorithm is used to determine offloading the vehicle’s computing tasks whether to the Cloud Computing (CC) server or Mobile Edge Computing (MEC) server or to be processed locally (in-vehicle computing). Second, the resource allocation layer, where the Deep Deterministic Policy Gradient (DDPG) algorithm is used to determine the computing platform again when the task is determined to be offloaded to either MEC servers or the cloud servers. To evaluate the performance of the RF classifier, we applied the model to a real-world driving trajectory dataset, and then compared the results with a different set of Machine Learning (ML) algorithms namely, K-nearest neighbour (KNN), Multilayer Perceptron (MLP) and Support Vector Machine (SVM). The results show the RF model outperformed other models in classification accuracy score of 99.83% for task offloading decision, where the KNN, MLP and SVM achieved 9S%, 94.Sl% and 90.94%, respectively. Moreover, the DDPG based resource allocation scheme converges within 150 episodes and reduced the latency cost by 85%.
基于AI的车载Ad-hoc网络计算资源分配
车载自组网(VANET)是一种没有固定基础设施的异构网络。本文提出了一种基于人工智能的任务卸载和计算资源分配模型,该模型可以对VANET中的计算资源进行动态管理。该模型分为两层。首先是任务卸载层,其中使用随机森林(RF)算法来确定是否将车辆的计算任务卸载到云计算(CC)服务器或移动边缘计算(MEC)服务器或本地处理(车载计算)。其次是资源分配层,当任务确定要卸载到MEC服务器或云服务器时,使用深度确定性策略梯度(Deep Deterministic Policy Gradient, DDPG)算法再次确定计算平台。为了评估RF分类器的性能,我们将该模型应用于现实世界的驾驶轨迹数据集,然后将结果与不同的机器学习(ML)算法(即k -近邻(KNN),多层感知器(MLP)和支持向量机(SVM))进行比较。结果表明,RF模型在任务卸载决策上的分类准确率得分为99.83%,优于其他模型,其中KNN、MLP和SVM的分类准确率分别为99.5%和94。分别为Sl%和90.94%。此外,基于DDPG的资源分配方案在150集内收敛,延迟成本降低了85%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信