Edoardo Vacchi, W. Cazzola, B. Combemale, M. Acher
{"title":"Automating variability model inference for component-based language implementations","authors":"Edoardo Vacchi, W. Cazzola, B. Combemale, M. Acher","doi":"10.1145/2648511.2648529","DOIUrl":null,"url":null,"abstract":"Recently, domain-specific language development has become again a topic of interest, as a means to help designing solutions to domain-specific problems. Componentized language frameworks, coupled with variability modeling, have the potential to bring language development to the masses, by simplifying the configuration of a new language from an existing set of reusable components. However, designing variability models for this purpose requires not only a good understanding of these frameworks and the way components interact, but also an adequate familiarity with the problem domain. In this paper we propose an approach to automatically infer a relevant variability model from a collection of already implemented language components, given a structured, but general representation of the domain. We describe techniques to assist users in achieving a better understanding of the relationships between language components, and find out which languages can be derived from them with respect to the given domain.","PeriodicalId":303765,"journal":{"name":"Proceedings of the 18th International Software Product Line Conference - Volume 1","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 18th International Software Product Line Conference - Volume 1","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2648511.2648529","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29
Abstract
Recently, domain-specific language development has become again a topic of interest, as a means to help designing solutions to domain-specific problems. Componentized language frameworks, coupled with variability modeling, have the potential to bring language development to the masses, by simplifying the configuration of a new language from an existing set of reusable components. However, designing variability models for this purpose requires not only a good understanding of these frameworks and the way components interact, but also an adequate familiarity with the problem domain. In this paper we propose an approach to automatically infer a relevant variability model from a collection of already implemented language components, given a structured, but general representation of the domain. We describe techniques to assist users in achieving a better understanding of the relationships between language components, and find out which languages can be derived from them with respect to the given domain.