Hierarchical Multi-turn Dialogue Generation Model Based on Double-layer Decoding

Siyu Gong, Biqing Zeng, Xiaomin Chen, Mayi Xu, Shengzhou Luo
{"title":"Hierarchical Multi-turn Dialogue Generation Model Based on Double-layer Decoding","authors":"Siyu Gong, Biqing Zeng, Xiaomin Chen, Mayi Xu, Shengzhou Luo","doi":"10.1109/ICCEA53728.2021.00030","DOIUrl":null,"url":null,"abstract":"Intelligent and accurate human-machine dialogue systems can help reduce labor costs in business. Existing models of multi-turn dialogue generation, despite their successes, still suffer from lack of contextual relevance and coherence in the generated responses. In this paper, we propose a hierarchical multi-turn dialogue generation model based on double-layer decoding (HMDM-DD) to exploit the positional relationship and contextual information of the dialogues. First, we use relative position embedding to obtain the sequence of context information, then applying the self-attention mechanism to get long-distance dependencies. Finally, we use double-layer decoding to scrutinize the generated dialogue repeatedly. Experiments on two datasets demonstrate that our model has robust superiority over compared methods in generating informative and fluent dialogues.","PeriodicalId":325790,"journal":{"name":"2021 International Conference on Computer Engineering and Application (ICCEA)","volume":"98 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Computer Engineering and Application (ICCEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCEA53728.2021.00030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Intelligent and accurate human-machine dialogue systems can help reduce labor costs in business. Existing models of multi-turn dialogue generation, despite their successes, still suffer from lack of contextual relevance and coherence in the generated responses. In this paper, we propose a hierarchical multi-turn dialogue generation model based on double-layer decoding (HMDM-DD) to exploit the positional relationship and contextual information of the dialogues. First, we use relative position embedding to obtain the sequence of context information, then applying the self-attention mechanism to get long-distance dependencies. Finally, we use double-layer decoding to scrutinize the generated dialogue repeatedly. Experiments on two datasets demonstrate that our model has robust superiority over compared methods in generating informative and fluent dialogues.
基于双层解码的分层多回合对话生成模型
智能精准的人机对话系统可以帮助企业降低人工成本。现有的多回合对话生成模型尽管取得了成功,但在生成的响应中仍然缺乏上下文相关性和连贯性。本文提出了一种基于双层解码(HMDM-DD)的分层多回合对话生成模型,以利用对话的位置关系和上下文信息。首先利用相对位置嵌入方法获取上下文信息序列,然后利用自关注机制获取远程依赖关系。最后,我们使用双层解码来反复审查生成的对话。在两个数据集上的实验表明,我们的模型在生成信息丰富、流畅的对话方面比比较方法具有鲁棒性优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信