Near-Lossless Deep Feature Compression for Collaborative Intelligence

Hyomin Choi, I. Bajić
{"title":"Near-Lossless Deep Feature Compression for Collaborative Intelligence","authors":"Hyomin Choi, I. Bajić","doi":"10.1109/MMSP.2018.8547134","DOIUrl":null,"url":null,"abstract":"Collaborative intelligence is a new paradigm for efficient deployment of deep neural networks across the mobile-cloud infrastructure. By dividing the network between the mobile and the cloud, it is possible to distribute the computational workload such that the overall energy and/or latency of the system is minimized. However, this necessitates sending deep feature data from the mobile to the cloud in order to perform inference. In this work, we examine the differences between the deep feature data and natural image data, and propose a simple and effective near-lossless deep feature compressor. The proposed method achieves up to 5% bit rate reduction compared to HEVC-Intra and even more against other popular image codecs. Finally, we suggest an approach for reconstructing the input image from compressed deep features that could serve to supplement the inference performed by the deep model.","PeriodicalId":137522,"journal":{"name":"2018 IEEE 20th International Workshop on Multimedia Signal Processing (MMSP)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"53","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 20th International Workshop on Multimedia Signal Processing (MMSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMSP.2018.8547134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 53

Abstract

Collaborative intelligence is a new paradigm for efficient deployment of deep neural networks across the mobile-cloud infrastructure. By dividing the network between the mobile and the cloud, it is possible to distribute the computational workload such that the overall energy and/or latency of the system is minimized. However, this necessitates sending deep feature data from the mobile to the cloud in order to perform inference. In this work, we examine the differences between the deep feature data and natural image data, and propose a simple and effective near-lossless deep feature compressor. The proposed method achieves up to 5% bit rate reduction compared to HEVC-Intra and even more against other popular image codecs. Finally, we suggest an approach for reconstructing the input image from compressed deep features that could serve to supplement the inference performed by the deep model.
面向协同智能的近无损深度特征压缩
协作智能是跨移动云基础设施高效部署深度神经网络的新范例。通过在移动和云之间划分网络,可以分配计算工作负载,从而使系统的总能量和/或延迟最小化。然而,这需要将深度特征数据从移动设备发送到云端,以便进行推理。在这项工作中,我们研究了深度特征数据与自然图像数据之间的差异,并提出了一种简单有效的近无损深度特征压缩器。与HEVC-Intra相比,该方法的比特率降低了5%,与其他流行的图像编解码器相比,比特率降低了更多。最后,我们提出了一种从压缩的深度特征中重建输入图像的方法,可以用来补充深度模型所执行的推理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信