Meshing Surfaces and Volumes with Centroidal Voronoi Tesselations

B. Lévy
{"title":"Meshing Surfaces and Volumes with Centroidal Voronoi Tesselations","authors":"B. Lévy","doi":"10.1109/ISVD.2011.41","DOIUrl":null,"url":null,"abstract":"We present several variations on Centroidal Voronoi Tesselations. First we review the classical definition, as a stable critical point of an objective function (quantization noise power), then we propose some modifications of the objective function (anisotropy, Lp norm). The so-modified Centroidal Voronoi Tesselations are useful for applications in geometry processing. Thus we demonstrate feature-aware surface remeshing, hexaedral-dominant meshing of 3D domains and fitting subdivision surfaces to unstructured triangle sets.","PeriodicalId":152151,"journal":{"name":"2011 Eighth International Symposium on Voronoi Diagrams in Science and Engineering","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Eighth International Symposium on Voronoi Diagrams in Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISVD.2011.41","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present several variations on Centroidal Voronoi Tesselations. First we review the classical definition, as a stable critical point of an objective function (quantization noise power), then we propose some modifications of the objective function (anisotropy, Lp norm). The so-modified Centroidal Voronoi Tesselations are useful for applications in geometry processing. Thus we demonstrate feature-aware surface remeshing, hexaedral-dominant meshing of 3D domains and fitting subdivision surfaces to unstructured triangle sets.
网格表面和体积与质心Voronoi镶嵌
我们提出了几个质心Voronoi镶嵌的变化。首先,我们回顾了目标函数(量化噪声功率)的稳定临界点的经典定义,然后我们提出了目标函数(各向异性,Lp范数)的一些修改。这种改进的质心Voronoi镶嵌在几何处理中的应用是有用的。因此,我们展示了特征感知的表面网格划分,3D域的六面体主导网格划分以及将细分表面拟合到非结构化三角形集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信