Optimal Personal Comfort Management Using SPOT+

Peter Xiang Gao, S. Keshav
{"title":"Optimal Personal Comfort Management Using SPOT+","authors":"Peter Xiang Gao, S. Keshav","doi":"10.1145/2528282.2528297","DOIUrl":null,"url":null,"abstract":"We present SPOT+, a system that allows office workers to optimally balance between heating energy consumption and personal thermal comfort. In prior work, we described SPOT: a smart personal thermal control system based on reactive control [8]. In contrast, the SPOT+ system performs predictive control. Specifically, SPOT+ uses the k-nearest-neighbour algorithm to predict room occupancy and learning-based model predictive control (LBMPC) to predict future room temperature and to compute the optimal sequence of control inputs. This allows the system to schedule future temperature setpoints to optimize an objective function expressed as a linear combination of thermal comfort and energy consumption. We have deployed SPOT+ as well as four other alternative control schemes in an office workspace. We find that SPOT+ reduces energy usage by 60% compared to a fixed-temperature setpoint and reduces personal thermal discomfort from 0.36 to 0.02 (in the ASHRAE comfort scale) compared to SPOT.","PeriodicalId":184274,"journal":{"name":"Proceedings of the 5th ACM Workshop on Embedded Systems For Energy-Efficient Buildings","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"70","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 5th ACM Workshop on Embedded Systems For Energy-Efficient Buildings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2528282.2528297","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 70

Abstract

We present SPOT+, a system that allows office workers to optimally balance between heating energy consumption and personal thermal comfort. In prior work, we described SPOT: a smart personal thermal control system based on reactive control [8]. In contrast, the SPOT+ system performs predictive control. Specifically, SPOT+ uses the k-nearest-neighbour algorithm to predict room occupancy and learning-based model predictive control (LBMPC) to predict future room temperature and to compute the optimal sequence of control inputs. This allows the system to schedule future temperature setpoints to optimize an objective function expressed as a linear combination of thermal comfort and energy consumption. We have deployed SPOT+ as well as four other alternative control schemes in an office workspace. We find that SPOT+ reduces energy usage by 60% compared to a fixed-temperature setpoint and reduces personal thermal discomfort from 0.36 to 0.02 (in the ASHRAE comfort scale) compared to SPOT.
使用 SPOT+ 实现最佳个人舒适度管理
我们介绍的 SPOT+ 是一种能让办公人员在供暖能耗和个人热舒适度之间实现最佳平衡的系统。在之前的工作中,我们介绍了 SPOT:一种基于被动控制的智能个人热控制系统[8]。相比之下,SPOT+ 系统执行的是预测控制。具体来说,SPOT+ 使用 k 最近邻算法来预测房间占用率,并使用基于学习的模型预测控制 (LBMPC) 来预测未来室温,并计算最佳控制输入序列。这样,系统就能安排未来的温度设定点,以优化目标函数,该函数以热舒适度和能耗的线性组合表示。我们在一个办公室工作区部署了 SPOT+ 以及其他四种可供选择的控制方案。我们发现,与固定温度设定点相比,SPOT+ 可减少 60% 的能源消耗,与 SPOT 相比,个人热不舒适度从 0.36 降至 0.02(按 ASHRAE 舒适度标准)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信