Bounds for Orders of Derivatives in Differential Elimination Algorithms

Richard Gustavson, A. Ovchinnikov, G. Pogudin
{"title":"Bounds for Orders of Derivatives in Differential Elimination Algorithms","authors":"Richard Gustavson, A. Ovchinnikov, G. Pogudin","doi":"10.1145/2930889.2930922","DOIUrl":null,"url":null,"abstract":"We compute an upper bound for the orders of derivatives in the Rosenfeld-Grobner algorithm. This algorithm computes a regular decomposition of a radical differential ideal in the ring of differential polynomials over a differential field of characteristic zero with an arbitrary number of commuting derivations. This decomposition can then be used to test for membership in the given radical differential ideal. In particular, this algorithm allows us to determine whether a system of polynomial PDEs is consistent. Previously, the only known order upper bound was given by Golubitsky, Kondratieva, Moreno Maza, and Ovchinnikov for the case of a single derivation. We achieve our bound by associating to the algorithm antichain sequences whose lengths can be bounded using the results of Leon Sanchez and Ovchinnikov.","PeriodicalId":169557,"journal":{"name":"Proceedings of the ACM on International Symposium on Symbolic and Algebraic Computation","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM on International Symposium on Symbolic and Algebraic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2930889.2930922","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

We compute an upper bound for the orders of derivatives in the Rosenfeld-Grobner algorithm. This algorithm computes a regular decomposition of a radical differential ideal in the ring of differential polynomials over a differential field of characteristic zero with an arbitrary number of commuting derivations. This decomposition can then be used to test for membership in the given radical differential ideal. In particular, this algorithm allows us to determine whether a system of polynomial PDEs is consistent. Previously, the only known order upper bound was given by Golubitsky, Kondratieva, Moreno Maza, and Ovchinnikov for the case of a single derivation. We achieve our bound by associating to the algorithm antichain sequences whose lengths can be bounded using the results of Leon Sanchez and Ovchinnikov.
微分消去算法中导数阶的界
我们计算了Rosenfeld-Grobner算法中导数阶数的上界。该算法计算特征为零的微分域上具有任意数量交换导数的微分多项式环上的根微分理想的正则分解。这种分解可以用来检验在给定的根微分理想中的隶属性。特别是,该算法允许我们确定多项式偏微分方程系统是否一致。在此之前,已知的阶上界是由Golubitsky, Kondratieva, Moreno Maza和Ovchinnikov给出的。利用Leon Sanchez和Ovchinnikov的结果,我们将长度可以有界的反链序列与算法联系起来,从而实现了我们的界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信