Quantile Risk Premiums

Felix Brinkmann, Julian Dörries, O. Korn
{"title":"Quantile Risk Premiums","authors":"Felix Brinkmann, Julian Dörries, O. Korn","doi":"10.2139/ssrn.3706678","DOIUrl":null,"url":null,"abstract":"This paper studies quantile-based moment premiums. The quantile-based approach delivers robust and flexible alternatives to premiums for variance, skewness and kurtosis risk and enhances our understanding of the pricing of risks in derivatives markets. To quantify these premiums, the paper introduces a new class of synthetic derivatives contracts: quantile swaps. Such contracts mimic quantile-based moment measures from robust statistics. An empirical study of index options detects two distinct premiums for dispersion and asymmetry, but no premium for steepness. This finding is in clear contrast to results obtained through traditional moment swaps and warns us to interpret moment premiums carefully.","PeriodicalId":209192,"journal":{"name":"ERN: Asset Pricing Models (Topic)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Asset Pricing Models (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3706678","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper studies quantile-based moment premiums. The quantile-based approach delivers robust and flexible alternatives to premiums for variance, skewness and kurtosis risk and enhances our understanding of the pricing of risks in derivatives markets. To quantify these premiums, the paper introduces a new class of synthetic derivatives contracts: quantile swaps. Such contracts mimic quantile-based moment measures from robust statistics. An empirical study of index options detects two distinct premiums for dispersion and asymmetry, but no premium for steepness. This finding is in clear contrast to results obtained through traditional moment swaps and warns us to interpret moment premiums carefully.
分位数风险保费
本文研究了基于分位数的矩溢价。基于分位数的方法为方差、偏度和峰度风险的溢价提供了强大而灵活的替代方案,并增强了我们对衍生品市场风险定价的理解。为了量化这些溢价,本文引入了一类新的合成衍生品合约:分位数掉期。这种契约模仿了健壮统计数据中基于分位数的力矩度量。一项对指数期权的实证研究发现,分散度和不对称性有两种明显的溢价,但陡峭度没有溢价。这一发现与通过传统的时刻互换获得的结果形成鲜明对比,并警告我们仔细解释时刻溢价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信