Gradient-Based Self-Organisation Patterns of Anticipative Adaptation

Sara Montagna, Danilo Pianini, Mirko Viroli
{"title":"Gradient-Based Self-Organisation Patterns of Anticipative Adaptation","authors":"Sara Montagna, Danilo Pianini, Mirko Viroli","doi":"10.1109/SASO.2012.25","DOIUrl":null,"url":null,"abstract":"In this paper we conceive new self-organisation mechanisms to enhance the Gradient self-organisation pattern with anticipative adaptation abilities. We ensure that the problem of retrieving a target of interest in mobile environments is solved by proactively reacting to locally-available information about future events, namely, the knowledge about future obstacles (e.g., expected jams or road interruption in a traffic control scenario) is used to compute alternative and faster paths in an emergent way.","PeriodicalId":126067,"journal":{"name":"2012 IEEE Sixth International Conference on Self-Adaptive and Self-Organizing Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Sixth International Conference on Self-Adaptive and Self-Organizing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SASO.2012.25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

In this paper we conceive new self-organisation mechanisms to enhance the Gradient self-organisation pattern with anticipative adaptation abilities. We ensure that the problem of retrieving a target of interest in mobile environments is solved by proactively reacting to locally-available information about future events, namely, the knowledge about future obstacles (e.g., expected jams or road interruption in a traffic control scenario) is used to compute alternative and faster paths in an emergent way.
基于梯度的预期适应自组织模式
本文提出了一种新的自组织机制,以增强具有预期适应能力的梯度自组织模式。我们确保在移动环境中检索感兴趣目标的问题是通过主动响应有关未来事件的本地可用信息来解决的,即,关于未来障碍的知识(例如,交通控制场景中预期的拥堵或道路中断)用于以紧急方式计算替代和更快的路径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信