Learning robust build-orders from previous opponents with coevolution

Christopher A. Ballinger, S. Louis
{"title":"Learning robust build-orders from previous opponents with coevolution","authors":"Christopher A. Ballinger, S. Louis","doi":"10.1109/CIG.2014.6932905","DOIUrl":null,"url":null,"abstract":"Learning robust, winning strategies from previous opponents in Real-Time Strategy games presents a challenging problem. In our paper, we investigate this problem by using case-injection into the teachset and population of a coevolutionary algorithm. Specifically, we take several winning build-orders we created through hand-tuning or coevolution and periodically inject them into the coevolutionary population and/or teachset. We compare the build-orders produced by three different case-injection methods to the robustness of build-orders produced without case-injection and measure their similarity to all the injected cases. Our results show that case injection works well with a coevolutionary algorithm. Case injection into the population quickly influences the strategies to play like some of the injected cases, without losing robustness. This work informs our ongoing research on finding robust build-orders for real-time strategy games.","PeriodicalId":219192,"journal":{"name":"2014 IEEE Conference on Computational Intelligence and Games","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Conference on Computational Intelligence and Games","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIG.2014.6932905","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Learning robust, winning strategies from previous opponents in Real-Time Strategy games presents a challenging problem. In our paper, we investigate this problem by using case-injection into the teachset and population of a coevolutionary algorithm. Specifically, we take several winning build-orders we created through hand-tuning or coevolution and periodically inject them into the coevolutionary population and/or teachset. We compare the build-orders produced by three different case-injection methods to the robustness of build-orders produced without case-injection and measure their similarity to all the injected cases. Our results show that case injection works well with a coevolutionary algorithm. Case injection into the population quickly influences the strategies to play like some of the injected cases, without losing robustness. This work informs our ongoing research on finding robust build-orders for real-time strategy games.
通过共同进化从之前的对手那里学习强大的构建顺序
在即时战略游戏中,从之前的对手那里学习强大的获胜策略是一个具有挑战性的问题。在本文中,我们通过将案例注入到协同进化算法的教学集和种群中来研究这个问题。具体来说,我们通过手动调整或共同进化创造了几个获胜的构建顺序,并定期将它们注入共同进化的种群和/或教学集。我们比较了三种不同的案例注入方法产生的构建顺序与没有案例注入的构建顺序的鲁棒性,并测量了它们与所有注入案例的相似性。我们的结果表明,案例注入与协同进化算法一起工作得很好。在不失去鲁棒性的情况下,向群体中注入案例会迅速影响像某些注入案例那样发挥作用的策略。这项工作为我们正在进行的关于寻找实时战略游戏的可靠建造顺序的研究提供了信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信