{"title":"PrefMiner: mining user's preferences for intelligent mobile notification management","authors":"Abhinav Mehrotra, R. Hendley, Mirco Musolesi","doi":"10.1145/2971648.2971747","DOIUrl":null,"url":null,"abstract":"Mobile notifications are increasingly used by a variety of applications to inform users about events, news or just to send alerts and reminders to them. However, many notifications are neither useful nor relevant to users' interests and, also for this reason, they are considered disruptive and potentially annoying. In this paper we present the design, implementation and evaluation of PrefMiner, a novel interruptibility management solution that learns users' preferences for receiving notifications based on automatic extraction of rules by mining their interaction with mobile phones. The goal is to build a system that is intelligible for users, i.e., not just a \"black-box\" solution. Rules are shown to users who might decide to accept or discard them at run-time. The design of PrefMiner is based on a large scale mobile notification dataset and its effectiveness is evaluated by means of an in-the-wild deployment.","PeriodicalId":303792,"journal":{"name":"Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2971648.2971747","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33
Abstract
Mobile notifications are increasingly used by a variety of applications to inform users about events, news or just to send alerts and reminders to them. However, many notifications are neither useful nor relevant to users' interests and, also for this reason, they are considered disruptive and potentially annoying. In this paper we present the design, implementation and evaluation of PrefMiner, a novel interruptibility management solution that learns users' preferences for receiving notifications based on automatic extraction of rules by mining their interaction with mobile phones. The goal is to build a system that is intelligible for users, i.e., not just a "black-box" solution. Rules are shown to users who might decide to accept or discard them at run-time. The design of PrefMiner is based on a large scale mobile notification dataset and its effectiveness is evaluated by means of an in-the-wild deployment.