Skeletal age-at-death estimation from the acetabulum based on a convolutional neural network

Zdeněk Buk, Anežka Kotěrová, J. Brůžek, J. Velemínská
{"title":"Skeletal age-at-death estimation from the acetabulum based on a convolutional neural network","authors":"Zdeněk Buk, Anežka Kotěrová, J. Brůžek, J. Velemínská","doi":"10.1109/Informatics57926.2022.10083446","DOIUrl":null,"url":null,"abstract":"The paper presents an age-at-death estimation model based on artificial neural networks with no explicit feature extraction, thus, completely eliminating the need for expert knowledge. As input information, it uses a 3D surface scan of the acetabulum, and as the output, it provides an estimated age-at-death. This study is based on a heterogeneous multipopulational database composed of 943 adult ossa coxae coming from 380 males and 327 females. The mean absolute error of our model for this database is about 12.4 years. The correlation coefficient between actual and estimated age-at-death is 0.6. This clearly demonstrates that our model captures age-related morphological changes of the shape and surface of the acetabulum.","PeriodicalId":101488,"journal":{"name":"2022 IEEE 16th International Scientific Conference on Informatics (Informatics)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 16th International Scientific Conference on Informatics (Informatics)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/Informatics57926.2022.10083446","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The paper presents an age-at-death estimation model based on artificial neural networks with no explicit feature extraction, thus, completely eliminating the need for expert knowledge. As input information, it uses a 3D surface scan of the acetabulum, and as the output, it provides an estimated age-at-death. This study is based on a heterogeneous multipopulational database composed of 943 adult ossa coxae coming from 380 males and 327 females. The mean absolute error of our model for this database is about 12.4 years. The correlation coefficient between actual and estimated age-at-death is 0.6. This clearly demonstrates that our model captures age-related morphological changes of the shape and surface of the acetabulum.
基于卷积神经网络的髋臼骨骼死亡年龄估计
本文提出了一种基于人工神经网络的死亡年龄估计模型,该模型不需要明确的特征提取,从而完全消除了对专家知识的需要。作为输入信息,它使用髋臼的三维表面扫描,作为输出,它提供了估计的死亡年龄。本研究基于一个异构多种群数据库,该数据库由来自380名男性和327名女性的943名成年髋骨组成。该模型的平均绝对误差约为12.4年。实际死亡年龄与估计死亡年龄之间的相关系数为0.6。这清楚地表明,我们的模型捕捉到了与年龄相关的髋臼形状和表面的形态学变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信