Cluster-based implementation of resource brokering strategy for parallel training of neural networks

V. Turchenko, Taras Puhol, A. Sachenko, L. Grandinetti
{"title":"Cluster-based implementation of resource brokering strategy for parallel training of neural networks","authors":"V. Turchenko, Taras Puhol, A. Sachenko, L. Grandinetti","doi":"10.1109/IDAACS.2011.6072743","DOIUrl":null,"url":null,"abstract":"The implementation issues of a cluster-based resource brokering strategy intended for efficient parallelization of neural networks training are presented in this paper. We describe a strategy of resource brokering based on the prediction of execution time and parallelization efficiency of algorithms using a BSP computation model and Pareto optimality with a weight coefficients approach for choosing optimal solution. Our results show a reasonable adaptation of the resource brokering strategy to the environment of a real computational cluster providing the minimal total time to delivery of the parallel application.","PeriodicalId":106306,"journal":{"name":"Proceedings of the 6th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 6th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IDAACS.2011.6072743","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The implementation issues of a cluster-based resource brokering strategy intended for efficient parallelization of neural networks training are presented in this paper. We describe a strategy of resource brokering based on the prediction of execution time and parallelization efficiency of algorithms using a BSP computation model and Pareto optimality with a weight coefficients approach for choosing optimal solution. Our results show a reasonable adaptation of the resource brokering strategy to the environment of a real computational cluster providing the minimal total time to delivery of the parallel application.
基于集群的资源代理策略在神经网络并行训练中的实现
提出了一种基于集群的资源代理策略的实现问题,以实现神经网络训练的高效并行化。提出了一种基于BSP计算模型和Pareto最优性的资源代理策略,该策略基于对算法执行时间和并行化效率的预测,采用加权系数法选择最优解。我们的结果显示了资源代理策略对真实计算集群环境的合理适应,为交付并行应用程序提供了最小的总时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信