An Efficient Method for Biomedical Word Sense Disambiguation Based on Web-Kernel Similarity

Mohammed Rais, M. Bekkali, Abdelmonaime Lachkar
{"title":"An Efficient Method for Biomedical Word Sense Disambiguation Based on Web-Kernel Similarity","authors":"Mohammed Rais, M. Bekkali, Abdelmonaime Lachkar","doi":"10.4018/IJHISI.20211001.OA9","DOIUrl":null,"url":null,"abstract":"Searching for the best sense for a polysemous word remains one of the greatest challenges in the representation of biomedical text. To this end, word sense disambiguation (WSD) algorithms mostly rely on an external source of knowledge, like a thesaurus or ontology, for automatically selecting the proper concept of an ambiguous term in a given window of context using semantic similarity and relatedness measures. In this paper, the authors propose a web-based kernel function for measuring the semantic relatedness between concepts to disambiguate an expression versus multiple possible concepts. This measure uses the large volume of documents returned by PubMed search engine to determine the greater context for a biomedical short text through a new term weighting scheme based on rough set theory (RST). To illustrate the efficiency of our proposed method, they evaluate a WSD algorithm based on this measure on a biomedical dataset (MSH-WSD) that contains 203 ambiguous terms and acronyms. The obtained results demonstrate promising improvements. KEyWoRDS Biomedical Word Sense Disambiguation, Conceptualization, Context Concept, MSH-WSD, Rough Set Theory, Short Text Similarity","PeriodicalId":101861,"journal":{"name":"Int. J. Heal. Inf. Syst. Informatics","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Heal. Inf. Syst. Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJHISI.20211001.OA9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Searching for the best sense for a polysemous word remains one of the greatest challenges in the representation of biomedical text. To this end, word sense disambiguation (WSD) algorithms mostly rely on an external source of knowledge, like a thesaurus or ontology, for automatically selecting the proper concept of an ambiguous term in a given window of context using semantic similarity and relatedness measures. In this paper, the authors propose a web-based kernel function for measuring the semantic relatedness between concepts to disambiguate an expression versus multiple possible concepts. This measure uses the large volume of documents returned by PubMed search engine to determine the greater context for a biomedical short text through a new term weighting scheme based on rough set theory (RST). To illustrate the efficiency of our proposed method, they evaluate a WSD algorithm based on this measure on a biomedical dataset (MSH-WSD) that contains 203 ambiguous terms and acronyms. The obtained results demonstrate promising improvements. KEyWoRDS Biomedical Word Sense Disambiguation, Conceptualization, Context Concept, MSH-WSD, Rough Set Theory, Short Text Similarity
基于web核相似度的生物医学词义消歧方法
寻找一个多义词的最佳意义仍然是生物医学文本表示的最大挑战之一。为此,词义消歧(WSD)算法主要依赖于外部的知识来源,如同义词库或本体,使用语义相似性和相关性度量在给定的上下文窗口中自动选择有歧义的术语的适当概念。在本文中,作者提出了一种基于web的核函数,用于测量概念之间的语义相关性,以消除表达与多个可能概念之间的歧义。该度量使用PubMed搜索引擎返回的大量文档,通过基于粗糙集理论(RST)的新的术语加权方案来确定生物医学短文本的更大上下文。为了说明我们提出的方法的有效性,他们在包含203个歧义术语和首字母缩略词的生物医学数据集(MSH-WSD)上评估了基于该度量的WSD算法。所得结果显示出有希望的改进。关键词:生物医学词义消歧,概念化,上下文概念,MSH-WSD,粗糙集理论,短文本相似度
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信