{"title":"Cost-effective construction of Information Retrieval test collections","authors":"D. Losada, Javier Parapar, Álvaro Barreiro","doi":"10.1145/3230599.3230612","DOIUrl":null,"url":null,"abstract":"In this paper we describe our recent research on effective construction of Information Retrieval collections. Relevance assessments are a core component of test collections, but they are expensive to produce. For each test query, only a sample of documents in the corpus can be assessed for relevance. We discuss here a class of document adjudication methods that iteratively choose documents based on reinforcement learning. Given a pool of candidate documents supplied by multiple retrieval systems, the production of relevance assessments is modeled as a multi-armed bandit problem. These bandit-based algorithms identify relevant documents with minimal effort. One instance of these models has been adopted by NIST to build the test collection of the TREC 2017 common core track.","PeriodicalId":448209,"journal":{"name":"Proceedings of the 5th Spanish Conference on Information Retrieval","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 5th Spanish Conference on Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3230599.3230612","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
In this paper we describe our recent research on effective construction of Information Retrieval collections. Relevance assessments are a core component of test collections, but they are expensive to produce. For each test query, only a sample of documents in the corpus can be assessed for relevance. We discuss here a class of document adjudication methods that iteratively choose documents based on reinforcement learning. Given a pool of candidate documents supplied by multiple retrieval systems, the production of relevance assessments is modeled as a multi-armed bandit problem. These bandit-based algorithms identify relevant documents with minimal effort. One instance of these models has been adopted by NIST to build the test collection of the TREC 2017 common core track.