Comparative evaluation of spatial context techniques for semantic image analysis

G. Papadopoulos, C. Saathoff, M. Grzegorzek, V. Mezaris, Y. Kompatsiaris, Steffen Staab, M. Strintzis
{"title":"Comparative evaluation of spatial context techniques for semantic image analysis","authors":"G. Papadopoulos, C. Saathoff, M. Grzegorzek, V. Mezaris, Y. Kompatsiaris, Steffen Staab, M. Strintzis","doi":"10.1109/WIAMIS.2009.5031457","DOIUrl":null,"url":null,"abstract":"In this paper, two approaches to utilizing contextual information in semantic image analysis are presented and comparatively evaluated. Both approaches make use of spatial context in the form of fuzzy directional relations. The first one is based on a Genetic Algorithm (GA), which is employed in order to decide upon the optimal semantic image interpretation by treating semantic image analysis as a global optimization problem. On the other hand, the second method follows a Binary Integer Programming (BIP) technique for estimating the optimal solution. Both spatial context techniques are evaluated with several different combinations of classifiers and low-level features, in order to demonstrate the improvements attained using spatial context in a number of different image analysis schemes.","PeriodicalId":233839,"journal":{"name":"2009 10th Workshop on Image Analysis for Multimedia Interactive Services","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 10th Workshop on Image Analysis for Multimedia Interactive Services","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WIAMIS.2009.5031457","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

In this paper, two approaches to utilizing contextual information in semantic image analysis are presented and comparatively evaluated. Both approaches make use of spatial context in the form of fuzzy directional relations. The first one is based on a Genetic Algorithm (GA), which is employed in order to decide upon the optimal semantic image interpretation by treating semantic image analysis as a global optimization problem. On the other hand, the second method follows a Binary Integer Programming (BIP) technique for estimating the optimal solution. Both spatial context techniques are evaluated with several different combinations of classifiers and low-level features, in order to demonstrate the improvements attained using spatial context in a number of different image analysis schemes.
语义图像分析的空间语境技术的比较评价
本文介绍了在语义图像分析中利用上下文信息的两种方法,并对其进行了比较评价。两种方法都以模糊方向关系的形式利用空间语境。第一种是基于遗传算法(GA),将语义图像分析作为全局优化问题来决定最优的语义图像解释。另一方面,第二种方法采用二进制整数规划(BIP)技术来估计最优解。这两种空间上下文技术都用几种不同的分类器和低级特征组合进行了评估,以证明在许多不同的图像分析方案中使用空间上下文所获得的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信