{"title":"Methods for detection and compensation of alignment errors occurring between a programmable optically reconfigurable gate array and its writer system","authors":"S. Kubota, M. Watanabe","doi":"10.1109/NAECON.2012.6531052","DOIUrl":null,"url":null,"abstract":"Recently, optically reconfigurable gate arrays (ORGAs) consisting of a gate array VLSI, a holographic memory, and a laser array have been developed to achieve a huge virtual gate count that is much larger than those of currently available VLSls. Consequently, ORGAs with more than tera-gate capacity will be realized by exploiting the storage capacity of a holographic memory. However, in contrast to current field-programmable gate arrays (FPGAs), conventional ORGAs have an important shortcoming: alignment errors arise when a programmable ORGA is recorded with a writer system. When programming a programmable ORGA along with alignment errors between the programmable ORGA and its writer system, the reconfiguration speed of the programmable ORGA is decreased. This paper therefore presents a detection and compensation method of alignment errors between a programmable ORGA and a writer system to alleviate that shortcoming.","PeriodicalId":352567,"journal":{"name":"2012 IEEE National Aerospace and Electronics Conference (NAECON)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE National Aerospace and Electronics Conference (NAECON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAECON.2012.6531052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Recently, optically reconfigurable gate arrays (ORGAs) consisting of a gate array VLSI, a holographic memory, and a laser array have been developed to achieve a huge virtual gate count that is much larger than those of currently available VLSls. Consequently, ORGAs with more than tera-gate capacity will be realized by exploiting the storage capacity of a holographic memory. However, in contrast to current field-programmable gate arrays (FPGAs), conventional ORGAs have an important shortcoming: alignment errors arise when a programmable ORGA is recorded with a writer system. When programming a programmable ORGA along with alignment errors between the programmable ORGA and its writer system, the reconfiguration speed of the programmable ORGA is decreased. This paper therefore presents a detection and compensation method of alignment errors between a programmable ORGA and a writer system to alleviate that shortcoming.