A novel GA-based and meta-heuristics method for short-term unit commitment problem

Gwo-Ching Liao, T. Tsao
{"title":"A novel GA-based and meta-heuristics method for short-term unit commitment problem","authors":"Gwo-Ching Liao, T. Tsao","doi":"10.1109/PES.2004.1373009","DOIUrl":null,"url":null,"abstract":"This paper presents a hybrid chaos search genetic algorithm / fuzzy system and simulated annealing method (CGAFS-SA) for solving short-term thermal generating unit commitment (UC) problems. The UC problem involves determining the start-up and shutdown schedules for generating units to meet the forecasted demand at the minimum cost. The commitment schedule must satisfy other constraints such as the generating limits per unit, reserve and individual units. We combined a genetic algorithm with the chaos search. First, it generates a set of feasible unit commitment schedules, and then puts the solution to the SA. The CGAFS has good global optimal search capabilities, but poor local optimal search capabilities. The SA method on the other hand, has good local optimal search capabilities. Through this combined approach an optimal solution can be found. Numerical simulations were carried out using four cases; ten, twenty, thirty and forty thermal units power systems over a 24-hour period. The result demonstrated the accuracy of the proposed CGAFS-SA approach.","PeriodicalId":236779,"journal":{"name":"IEEE Power Engineering Society General Meeting, 2004.","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Power Engineering Society General Meeting, 2004.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PES.2004.1373009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

This paper presents a hybrid chaos search genetic algorithm / fuzzy system and simulated annealing method (CGAFS-SA) for solving short-term thermal generating unit commitment (UC) problems. The UC problem involves determining the start-up and shutdown schedules for generating units to meet the forecasted demand at the minimum cost. The commitment schedule must satisfy other constraints such as the generating limits per unit, reserve and individual units. We combined a genetic algorithm with the chaos search. First, it generates a set of feasible unit commitment schedules, and then puts the solution to the SA. The CGAFS has good global optimal search capabilities, but poor local optimal search capabilities. The SA method on the other hand, has good local optimal search capabilities. Through this combined approach an optimal solution can be found. Numerical simulations were carried out using four cases; ten, twenty, thirty and forty thermal units power systems over a 24-hour period. The result demonstrated the accuracy of the proposed CGAFS-SA approach.
一种基于遗传算法和元启发式的短期机组承诺问题求解方法
本文提出了一种混合混沌搜索遗传算法/模糊系统和模拟退火方法(CGAFS-SA)来解决发电机组短期使用问题。UC问题涉及确定发电机组的启动和关闭时间表,以满足预测的需求,以最低的成本。承诺计划必须满足其他约束条件,如每机组发电限制、备用和单个机组。我们将遗传算法与混沌搜索相结合。首先,生成一组可行的单元承诺计划,然后将解决方案提交给SA。该算法具有较好的全局最优搜索能力,但局部最优搜索能力较差。另一方面,SA方法具有良好的局部最优搜索能力。通过这种组合方法可以找到最优解。采用四种情况进行了数值模拟;10个,20个,30个和40个热单位在24小时内为系统供电。结果证明了所提出的CGAFS-SA方法的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信