VesselShot: Few-shot learning for cerebral blood vessel segmentation

M. Aktar, H. Rivaz, Marta Kersten-Oertel, Yiming Xiao
{"title":"VesselShot: Few-shot learning for cerebral blood vessel segmentation","authors":"M. Aktar, H. Rivaz, Marta Kersten-Oertel, Yiming Xiao","doi":"10.48550/arXiv.2308.14626","DOIUrl":null,"url":null,"abstract":"Angiography is widely used to detect, diagnose, and treat cerebrovascular diseases. While numerous techniques have been proposed to segment the vascular network from different imaging modalities, deep learning (DL) has emerged as a promising approach. However, existing DL methods often depend on proprietary datasets and extensive manual annotation. Moreover, the availability of pre-trained networks specifically for medical domains and 3D volumes is limited. To overcome these challenges, we propose a few-shot learning approach called VesselShot for cerebrovascular segmentation. VesselShot leverages knowledge from a few annotated support images and mitigates the scarcity of labeled data and the need for extensive annotation in cerebral blood vessel segmentation. We evaluated the performance of VesselShot using the publicly available TubeTK dataset for the segmentation task, achieving a mean Dice coefficient (DC) of 0.62(0.03).","PeriodicalId":344785,"journal":{"name":"MLCN@MICCAI","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MLCN@MICCAI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2308.14626","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Angiography is widely used to detect, diagnose, and treat cerebrovascular diseases. While numerous techniques have been proposed to segment the vascular network from different imaging modalities, deep learning (DL) has emerged as a promising approach. However, existing DL methods often depend on proprietary datasets and extensive manual annotation. Moreover, the availability of pre-trained networks specifically for medical domains and 3D volumes is limited. To overcome these challenges, we propose a few-shot learning approach called VesselShot for cerebrovascular segmentation. VesselShot leverages knowledge from a few annotated support images and mitigates the scarcity of labeled data and the need for extensive annotation in cerebral blood vessel segmentation. We evaluated the performance of VesselShot using the publicly available TubeTK dataset for the segmentation task, achieving a mean Dice coefficient (DC) of 0.62(0.03).
VesselShot:脑血管分割的少射学习
血管造影广泛应用于脑血管疾病的检测、诊断和治疗。虽然已经提出了许多技术来从不同的成像模式中分割血管网络,但深度学习(DL)已经成为一种有前途的方法。然而,现有的深度学习方法往往依赖于专有数据集和大量的手工注释。此外,专门针对医疗领域和3D卷的预训练网络的可用性是有限的。为了克服这些挑战,我们提出了一种称为VesselShot的小片段学习方法用于脑血管分割。VesselShot利用了一些注释支持图像的知识,减轻了标记数据的稀缺性和对脑血管分割中大量注释的需求。我们使用公开可用的TubeTK数据集评估了VesselShot分割任务的性能,获得了0.62(0.03)的平均Dice系数(DC)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信