{"title":"A visual SLAM-based approach for calibration of distributed camera networks","authors":"T. Pollok, Eduardo Monari","doi":"10.1109/AVSS.2016.7738081","DOIUrl":null,"url":null,"abstract":"This paper presents a concept which tackles the pose estimation problem (extrinsic calibration) for distributed, non-overlapping multi-camera networks. The basic idea is to use a visual SLAM technique in order to reconstruct the scene from a video which includes areas visible by each camera of the network. The reconstruction consists of a sparse, but highly accurate point cloud, representing a joint 3D reference coordinate system. Additionally, a set of 3D-registered keyframes (images) are used for high resolution representation of the scene which also include a mapping between a set of 2D pixels to 3D points of the point cloud. The pose estimation of each surveillance camera is performed individually by assigning 2D-2D correspondences between pixels of the surveillance camera and pixels of similar keyframes that map to a 3D point. This allows to implicitly obtain a set of 2D-3D correspondences between pixels in the surveillance camera and their corresponding 3D points in a joint reference coordinate system. Thus the global camera pose can be estimated using robust methods for solving the perspective-n-point problem.","PeriodicalId":438290,"journal":{"name":"2016 13th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)","volume":"107 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 13th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AVSS.2016.7738081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
This paper presents a concept which tackles the pose estimation problem (extrinsic calibration) for distributed, non-overlapping multi-camera networks. The basic idea is to use a visual SLAM technique in order to reconstruct the scene from a video which includes areas visible by each camera of the network. The reconstruction consists of a sparse, but highly accurate point cloud, representing a joint 3D reference coordinate system. Additionally, a set of 3D-registered keyframes (images) are used for high resolution representation of the scene which also include a mapping between a set of 2D pixels to 3D points of the point cloud. The pose estimation of each surveillance camera is performed individually by assigning 2D-2D correspondences between pixels of the surveillance camera and pixels of similar keyframes that map to a 3D point. This allows to implicitly obtain a set of 2D-3D correspondences between pixels in the surveillance camera and their corresponding 3D points in a joint reference coordinate system. Thus the global camera pose can be estimated using robust methods for solving the perspective-n-point problem.