Automatic Asphalt pavement crack detection and classification using Neural Networks

Jaroslav Borecký, Martin Kohlík, H. Kubátová, P. Kubalík
{"title":"Automatic Asphalt pavement crack detection and classification using Neural Networks","authors":"Jaroslav Borecký, Martin Kohlík, H. Kubátová, P. Kubalík","doi":"10.1109/BEC.2010.5630750","DOIUrl":null,"url":null,"abstract":"Managing of road maintenance is the most complex task for road administrations. The first presumption for the evaluation analysis and correct road construction rehabilitation is to have accurate and up-todate information about road pavement condition. As the pavement condition survey is a critical process, it needs fast and cost-effective methods to collect necessary data. The paper proposes a system for automatic road pavement survey that uses image processing techniques to extract features from road images. A Neural Networks approach is used for detection of regions of images with defects and, further processing also, classifying defects into separate types. Proposed system could be used in the future to replace human labour for identification and classification of defects.","PeriodicalId":228594,"journal":{"name":"2010 12th Biennial Baltic Electronics Conference","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"69","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 12th Biennial Baltic Electronics Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BEC.2010.5630750","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 69

Abstract

Managing of road maintenance is the most complex task for road administrations. The first presumption for the evaluation analysis and correct road construction rehabilitation is to have accurate and up-todate information about road pavement condition. As the pavement condition survey is a critical process, it needs fast and cost-effective methods to collect necessary data. The paper proposes a system for automatic road pavement survey that uses image processing techniques to extract features from road images. A Neural Networks approach is used for detection of regions of images with defects and, further processing also, classifying defects into separate types. Proposed system could be used in the future to replace human labour for identification and classification of defects.
基于神经网络的沥青路面裂缝自动检测与分类
道路养护管理是道路管理部门最复杂的任务。评估分析和正确修复道路建设的首要前提是拥有准确和最新的道路路面状况信息。由于路面状况调查是一个关键的过程,需要快速和经济的方法来收集必要的数据。本文提出了一种利用图像处理技术从道路图像中提取特征的道路路面自动测量系统。使用神经网络方法检测图像中存在缺陷的区域,并对缺陷进行进一步处理,将缺陷分类为不同的类型。该系统将来可用于代替人工进行缺陷的识别和分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信