Master-Slave Synchronization for Trajectory Tracking Error Using Time-Delay Recurrent Neural Networks via Krasovskii-Lur’e Functional for Chua’s Circuit

Joel Perez Padron, Jose Paz Perez Padron, Angel Flores Hernandez, Santiago Arroyo
{"title":"Master-Slave Synchronization for Trajectory Tracking Error Using Time-Delay Recurrent Neural Networks via Krasovskii-Lur’e Functional for Chua’s Circuit","authors":"Joel Perez Padron, Jose Paz Perez Padron, Angel Flores Hernandez, Santiago Arroyo","doi":"10.1109/ICMEAE.2016.017","DOIUrl":null,"url":null,"abstract":"This paper presents an application of a time-delay neural networks to chaos synchronization. The two main methodologies, on which the approach is based, are time-delay recurrent neural networks and inverse optimal control for nonlinear systems. The problem of trajectory tracking is studied, based on the Lyapunov-Krasovskii and Lur'e theory, that achieves the global asymptotic stability of the tracking error between a delayed recurrent neural network and a reference function is obtained. The method is illustrated for the synchronization, the analytic results we present a trajectory tracking simulation of a time-delay dynamical network and the Chua's circuits.","PeriodicalId":273081,"journal":{"name":"2016 International Conference on Mechatronics, Electronics and Automotive Engineering (ICMEAE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Mechatronics, Electronics and Automotive Engineering (ICMEAE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMEAE.2016.017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents an application of a time-delay neural networks to chaos synchronization. The two main methodologies, on which the approach is based, are time-delay recurrent neural networks and inverse optimal control for nonlinear systems. The problem of trajectory tracking is studied, based on the Lyapunov-Krasovskii and Lur'e theory, that achieves the global asymptotic stability of the tracking error between a delayed recurrent neural network and a reference function is obtained. The method is illustrated for the synchronization, the analytic results we present a trajectory tracking simulation of a time-delay dynamical network and the Chua's circuits.
基于Krasovskii-Lur 'e泛函的时延递归神经网络轨迹跟踪误差主从同步
本文介绍了时滞神经网络在混沌同步中的应用。该方法所基于的两种主要方法是时滞递归神经网络和非线性系统的逆最优控制。研究了基于Lyapunov-Krasovskii和Lur'e理论的轨迹跟踪问题,得到了延迟递归神经网络与参考函数之间跟踪误差的全局渐近稳定性。分析结果给出了时滞动态网络和蔡氏电路的轨迹跟踪仿真。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信