Hydrogen Loading System for Thin Films for Betavoltaics

D. Cheu, T. Adams, S. Revankar
{"title":"Hydrogen Loading System for Thin Films for Betavoltaics","authors":"D. Cheu, T. Adams, S. Revankar","doi":"10.1115/icone29-93910","DOIUrl":null,"url":null,"abstract":"\n Betavoltaics are direct conversion energy devices that are ideal for low, micropower and long-lasting, uninterruptable applications. Betavoltaics operate similarly to photovoltaics where a radioisotope irradiates beta particles into a semiconductor p-n junction that converts the kinetic energy into electrical energy. Betavoltaics are limited by their power output from the radioiso-tope. The source density can be increased by the selection of solid-state substrates. While solid-state substrates can be selected from simulations, the viability of the substrate to absorb tritium has to evaluated. The development of a hydrogen loading system was performed to evaluate different film types to understand how they perform during the hydrogen/tritium loading process. The hydrogen loading system utilizes the Sievert method, where the initial pressure and volume is constant and pressure drop in the system is used to determine hydrogen uptake of a film substrate. The procedures of the hydrogen loading system are detailed. To test the procedures of the hydrogen loading system, old, palladium films were loaded. Results show uptake of hydrogen by the thin palladium films, as well as cycles of hydrogen absorption and desorption. Hydrogen loading of palladium was compared to a prior result and was shown to have similar results.","PeriodicalId":302303,"journal":{"name":"Volume 15: Student Paper Competition","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 15: Student Paper Competition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/icone29-93910","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Betavoltaics are direct conversion energy devices that are ideal for low, micropower and long-lasting, uninterruptable applications. Betavoltaics operate similarly to photovoltaics where a radioisotope irradiates beta particles into a semiconductor p-n junction that converts the kinetic energy into electrical energy. Betavoltaics are limited by their power output from the radioiso-tope. The source density can be increased by the selection of solid-state substrates. While solid-state substrates can be selected from simulations, the viability of the substrate to absorb tritium has to evaluated. The development of a hydrogen loading system was performed to evaluate different film types to understand how they perform during the hydrogen/tritium loading process. The hydrogen loading system utilizes the Sievert method, where the initial pressure and volume is constant and pressure drop in the system is used to determine hydrogen uptake of a film substrate. The procedures of the hydrogen loading system are detailed. To test the procedures of the hydrogen loading system, old, palladium films were loaded. Results show uptake of hydrogen by the thin palladium films, as well as cycles of hydrogen absorption and desorption. Hydrogen loading of palladium was compared to a prior result and was shown to have similar results.
光电薄膜氢负载系统
Betavoltaics是一种直接转换能量的设备,是低功耗、微功耗和持久、不间断应用的理想选择。Betavoltaics的工作原理与光伏类似,其中放射性同位素将β粒子照射到半导体p-n结中,将动能转换为电能。贝塔光伏受到放射性同位素输出功率的限制。可以通过选择固态衬底来增加源密度。虽然可以从模拟中选择固态衬底,但必须评估衬底吸收氚的可行性。为了评估不同类型的膜在氢/氚加载过程中的表现,研究人员开发了一套氢气加载系统。氢气加载系统采用Sievert方法,其中初始压力和体积恒定,系统中的压降用于确定薄膜衬底的氢气吸收率。详细介绍了加氢系统的操作步骤。为了测试氢气加载系统的程序,加载了旧的钯膜。结果表明,钯膜对氢气有吸附作用,并具有吸氢和解吸氢的循环。钯的氢负荷与先前的结果进行了比较,并显示出类似的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信