Chinese Grammatical Error Diagnosis Using Ensemble Learning

Yang Xiang, Xiaolong Wang, Wenying Han, Qinghua Hong
{"title":"Chinese Grammatical Error Diagnosis Using Ensemble Learning","authors":"Yang Xiang, Xiaolong Wang, Wenying Han, Qinghua Hong","doi":"10.18653/v1/W15-4415","DOIUrl":null,"url":null,"abstract":"Automatic grammatical error detection for Chinese has been a big challenge for NLP researchers for a long time, mostly due to the flexible and irregular ways in the expressing of this language. Strictly speaking, there is no evidence of a series of formal and strict grammar rules for Chinese, especially for the spoken Chinese, making it hard for foreigners to master this language. The CFL shared task provides a platform for the researchers to develop automatic engines to detect grammatical errors based on a number of manually annotated Chinese spoken sentences. This paper introduces HITSZ’s system for this year’s Chinese grammatical error diagnosis (CGED) task. Similar to the last year’s task, we put our emphasis mostly on the error detection level and error type identification level but did little for the position level. For all our models, we simply use supervised machine learning methods constrained to the given training corpus, with neither any heuristic rules nor any other referenced materials (except for the last years’ data). Among the three runs of results we submitted, the one using the ensemble classifier Random Feature Subspace (HITSZ_Run1) gained the best performance, with an optimal F1 of 0.6648 for the detection level and 0.2675 for the identification level.","PeriodicalId":316430,"journal":{"name":"NLP-TEA@ACL/IJCNLP","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NLP-TEA@ACL/IJCNLP","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/W15-4415","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

Automatic grammatical error detection for Chinese has been a big challenge for NLP researchers for a long time, mostly due to the flexible and irregular ways in the expressing of this language. Strictly speaking, there is no evidence of a series of formal and strict grammar rules for Chinese, especially for the spoken Chinese, making it hard for foreigners to master this language. The CFL shared task provides a platform for the researchers to develop automatic engines to detect grammatical errors based on a number of manually annotated Chinese spoken sentences. This paper introduces HITSZ’s system for this year’s Chinese grammatical error diagnosis (CGED) task. Similar to the last year’s task, we put our emphasis mostly on the error detection level and error type identification level but did little for the position level. For all our models, we simply use supervised machine learning methods constrained to the given training corpus, with neither any heuristic rules nor any other referenced materials (except for the last years’ data). Among the three runs of results we submitted, the one using the ensemble classifier Random Feature Subspace (HITSZ_Run1) gained the best performance, with an optimal F1 of 0.6648 for the detection level and 0.2675 for the identification level.
基于集成学习的汉语语法错误诊断
长期以来,汉语语法错误的自动检测一直是NLP研究人员面临的一大挑战,这主要是由于汉语表达方式的灵活性和不规则性。严格地说,汉语,特别是汉语口语,并没有一系列正式和严格的语法规则,使得外国人很难掌握这门语言。CFL共享任务为研究人员提供了一个平台,可以开发基于大量人工注释的汉语口语句子的自动语法错误检测引擎。本文介绍了HITSZ为今年的汉语语法错误诊断(CGED)任务开发的系统。与去年的任务类似,我们的重点主要放在错误检测层和错误类型识别层,而对位置层的关注较少。对于我们所有的模型,我们只是使用受给定训练语料库约束的监督机器学习方法,既没有任何启发式规则,也没有任何其他参考材料(除了最近几年的数据)。在我们提交的三次运行结果中,使用集成分类器Random Feature Subspace (HITSZ_Run1)的结果获得了最好的性能,在检测水平上的最优F1为0.6648,在识别水平上的最优F1为0.2675。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信