A Modified Q-Learning Algorithm for Control of Two-Qubit Systems

Omar Shindi, Qi Yu, D. Dong, Jiangjun Tang
{"title":"A Modified Q-Learning Algorithm for Control of Two-Qubit Systems","authors":"Omar Shindi, Qi Yu, D. Dong, Jiangjun Tang","doi":"10.1109/ICMLC51923.2020.9469044","DOIUrl":null,"url":null,"abstract":"This paper investigates quantum control problems using tabular Q-learning. A modified tabular Q-learning algorithm based on dynamic greedy method is proposed and the proposed algorithm succeeds for finding control sequences to drive a two-qubit system to a given target state with high fidelity. The modified algorithm also shows improved performance over the traditional Q-learning for solving quantum control problems on continuous states space. Moreover, the modified tabular Q-learning algorithm is compared with stochastic gradient descent and Krotov algorithms for solving quantum control problems. Simulation results on a two-qubit system demonstrate the effectiveness of the proposed algorithm.","PeriodicalId":170815,"journal":{"name":"2020 International Conference on Machine Learning and Cybernetics (ICMLC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Machine Learning and Cybernetics (ICMLC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLC51923.2020.9469044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper investigates quantum control problems using tabular Q-learning. A modified tabular Q-learning algorithm based on dynamic greedy method is proposed and the proposed algorithm succeeds for finding control sequences to drive a two-qubit system to a given target state with high fidelity. The modified algorithm also shows improved performance over the traditional Q-learning for solving quantum control problems on continuous states space. Moreover, the modified tabular Q-learning algorithm is compared with stochastic gradient descent and Krotov algorithms for solving quantum control problems. Simulation results on a two-qubit system demonstrate the effectiveness of the proposed algorithm.
一种用于双量子比特系统控制的改进q -学习算法
本文利用表格q -学习研究量子控制问题。提出了一种改进的基于动态贪心方法的表q学习算法,该算法成功地找到了控制序列,使双量子位系统高保真地达到给定的目标状态。改进后的算法在求解连续状态空间上的量子控制问题时,也比传统的q -学习算法表现出更高的性能。此外,将改进的表格q -学习算法与随机梯度下降和Krotov算法进行了比较,用于求解量子控制问题。在双量子比特系统上的仿真结果验证了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信