On the composite discontinuous Galerkin method for simulations of electric properties of semiconductor devices

K. Sakowski, L. Marcinkowski, P. Strak, P. Kempisty, S. Krukowski
{"title":"On the composite discontinuous Galerkin method for simulations of electric properties of semiconductor devices","authors":"K. Sakowski, L. Marcinkowski, P. Strak, P. Kempisty, S. Krukowski","doi":"10.1553/etna_vol51s75","DOIUrl":null,"url":null,"abstract":"In this paper, a variant of discretization of the van Roosbroeck equations in the equilibrium state with the Composite Discontinuous Galerkin Method for the rectangular domain is discussed. It is based on Symmetric Interior Penalty Galerkin (SIPG) method. The proposed method accounts for lower regularity of the solution on the interfaces of devices' layers. It is shown that the discrete problem is well-defined and that discrete solution is unique. Error estimates are derived. Finally, numerical simulations are presented.","PeriodicalId":282695,"journal":{"name":"ETNA - Electronic Transactions on Numerical Analysis","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ETNA - Electronic Transactions on Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1553/etna_vol51s75","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, a variant of discretization of the van Roosbroeck equations in the equilibrium state with the Composite Discontinuous Galerkin Method for the rectangular domain is discussed. It is based on Symmetric Interior Penalty Galerkin (SIPG) method. The proposed method accounts for lower regularity of the solution on the interfaces of devices' layers. It is shown that the discrete problem is well-defined and that discrete solution is unique. Error estimates are derived. Finally, numerical simulations are presented.
半导体器件电性能模拟的复合不连续伽辽金法
本文讨论了在矩形域上用复合不连续伽辽金法对处于平衡态的范鲁斯布鲁克方程进行离散化的一种方法。该算法基于对称内罚伽辽金(SIPG)方法。该方法解决了器件层接口上解的低规则性问题。证明了离散问题具有良好的定义,且离散解是唯一的。得到误差估计。最后进行了数值模拟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信