Convolutional Neural Network-based Jaywalking Data Generation and Classification

Jaeseong Park, Y. Lee, Junho Heo, Suk-ju Kang
{"title":"Convolutional Neural Network-based Jaywalking Data Generation and Classification","authors":"Jaeseong Park, Y. Lee, Junho Heo, Suk-ju Kang","doi":"10.1109/ISOCC47750.2019.9078526","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a novel system to generate jaywalking images. To synthesize a pedestrian on the road and label the binary case such as jaywalk or normal-walk, the pre-trained Convolutional Neural Network (CNN) is used to segment the drivable area from the large-scale dataset. The proposed system automatically generates a jaywalker based on existing pedestrian objects in the image. The proposed system performs three main steps. First, we train the existing network with both black box image dataset and object dataset to segment road areas and pedestrians. Second, the generator synthesizes jaywalkers randomly within the road segmentation masks. Third, a CNN classifier is trained using the generated synthetic dataset and performs the inference from natural jaywalking images. The experiment results show that the jaywalking classifier trained with both generated synthetic dataset and the untouched natural dataset has a high accuracy of 0.96, which is 0.08 higher than the accuracy using only the untouched natural dataset on the same model.","PeriodicalId":113802,"journal":{"name":"2019 International SoC Design Conference (ISOCC)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International SoC Design Conference (ISOCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISOCC47750.2019.9078526","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, we propose a novel system to generate jaywalking images. To synthesize a pedestrian on the road and label the binary case such as jaywalk or normal-walk, the pre-trained Convolutional Neural Network (CNN) is used to segment the drivable area from the large-scale dataset. The proposed system automatically generates a jaywalker based on existing pedestrian objects in the image. The proposed system performs three main steps. First, we train the existing network with both black box image dataset and object dataset to segment road areas and pedestrians. Second, the generator synthesizes jaywalkers randomly within the road segmentation masks. Third, a CNN classifier is trained using the generated synthetic dataset and performs the inference from natural jaywalking images. The experiment results show that the jaywalking classifier trained with both generated synthetic dataset and the untouched natural dataset has a high accuracy of 0.96, which is 0.08 higher than the accuracy using only the untouched natural dataset on the same model.
基于卷积神经网络的乱穿马路数据生成与分类
在本文中,我们提出了一种新的系统来生成乱穿马路的图像。为了合成道路上的行人并标记二元情况(如乱穿马路或正常行走),使用预训练的卷积神经网络(CNN)从大规模数据集中分割可驾驶区域。该系统基于图像中现有的行人对象自动生成一个横穿马路的行人。提出的系统执行三个主要步骤。首先,我们用黑箱图像数据集和目标数据集训练现有的网络来分割道路区域和行人。其次,生成器在道路分割蒙版内随机合成乱穿马路的行人。第三,使用生成的合成数据集训练CNN分类器,并从自然乱穿马路的图像中进行推理。实验结果表明,同时使用合成数据集和未使用自然数据集训练的乱穿马路分类器准确率达到0.96,比在同一模型上仅使用未使用自然数据集训练的准确率提高0.08。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信