Generalized growth and approximation errors of entire harmonic functions in \(R^n\), \(n \geq 3\)

Devendra Kumar
{"title":"Generalized growth and approximation errors of entire harmonic functions in \\(R^n\\), \\(n \\geq 3\\)","authors":"Devendra Kumar","doi":"10.33993/jnaat472-1166","DOIUrl":null,"url":null,"abstract":"In this paper we study the continuation of harmonic functions in the ball to the entire harmonic functions in space \\(\\mathbb{R}^n\\), \\(n\\geq 3\\). \nThe generalized order introduced by M.N. Seremeta has been used to characterize the growth of such functions. Moreover, the generalized order, generalized lower order and generalized type have been characterized in terms of harmonic polynomial approximation errors. \nOur results apply satisfactorily for slow growth.","PeriodicalId":287022,"journal":{"name":"Journal of Numerical Analysis and Approximation Theory","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Numerical Analysis and Approximation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33993/jnaat472-1166","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we study the continuation of harmonic functions in the ball to the entire harmonic functions in space \(\mathbb{R}^n\), \(n\geq 3\). The generalized order introduced by M.N. Seremeta has been used to characterize the growth of such functions. Moreover, the generalized order, generalized lower order and generalized type have been characterized in terms of harmonic polynomial approximation errors. Our results apply satisfactorily for slow growth.
\(R^n\)中全调和函数的广义增长与近似误差 \(n \geq 3\)
本文研究了球中的调和函数对空间中整个调和函数的延拓\(\mathbb{R}^n\), \(n\geq 3\)。由M.N. Seremeta引入的广义阶被用来描述这类函数的增长。此外,还用调和多项式近似误差对广义阶、广义低阶和广义型进行了表征。我们的结果令人满意地适用于缓慢增长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信