Long range thermal image object recognition for perimeter security

Roxana Mihaescu, S. Carata, Mihai Chindea, M. Ghenescu
{"title":"Long range thermal image object recognition for perimeter security","authors":"Roxana Mihaescu, S. Carata, Mihai Chindea, M. Ghenescu","doi":"10.1109/comm54429.2022.9817184","DOIUrl":null,"url":null,"abstract":"Nowadays, the field of long-range thermal image processing is increasingly popular. Although this technology has several advantages in terms of security and monitoring, there are not enough autonomous algorithms for processing these images. In this paper, we aim to address two of the main problems in this field: lack of long-range thermal databases and shortage of autonomous monitoring systems. Firstly, we are introducing a new proprietary database with long-range thermal images. Further, we present a thermal detection algorithm, capable of running on real-time monitoring systems. This algorithm is based on a general-purpose DNN (Deep Neural Network) object detector - the YOLO (You Only Look Once) model. Thus, with minimal computing and hardware resources, this article aims to bring a plus in the field of long-range thermal Image processing.","PeriodicalId":118077,"journal":{"name":"2022 14th International Conference on Communications (COMM)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 14th International Conference on Communications (COMM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/comm54429.2022.9817184","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Nowadays, the field of long-range thermal image processing is increasingly popular. Although this technology has several advantages in terms of security and monitoring, there are not enough autonomous algorithms for processing these images. In this paper, we aim to address two of the main problems in this field: lack of long-range thermal databases and shortage of autonomous monitoring systems. Firstly, we are introducing a new proprietary database with long-range thermal images. Further, we present a thermal detection algorithm, capable of running on real-time monitoring systems. This algorithm is based on a general-purpose DNN (Deep Neural Network) object detector - the YOLO (You Only Look Once) model. Thus, with minimal computing and hardware resources, this article aims to bring a plus in the field of long-range thermal Image processing.
用于周边安全的远程热图像目标识别
目前,远程热图像处理领域日益受到重视。尽管该技术在安全性和监控方面具有一些优势,但目前还没有足够的自主算法来处理这些图像。在本文中,我们旨在解决这一领域的两个主要问题:缺乏远程热数据库和缺乏自主监测系统。首先,我们引入了一个新的专有的远程热图像数据库。此外,我们提出了一种能够在实时监控系统上运行的热检测算法。该算法基于通用的DNN(深度神经网络)对象检测器- YOLO(你只看一次)模型。因此,在最小的计算和硬件资源下,本文旨在为远程热图像处理领域带来优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信