Anytime Classification Using the Nearest Neighbor Algorithm with Applications to Stream Mining

Ken Ueno, X. Xi, Eamonn J. Keogh, Dah-Jye Lee
{"title":"Anytime Classification Using the Nearest Neighbor Algorithm with Applications to Stream Mining","authors":"Ken Ueno, X. Xi, Eamonn J. Keogh, Dah-Jye Lee","doi":"10.1109/ICDM.2006.21","DOIUrl":null,"url":null,"abstract":"For many real world problems we must perform classification under widely varying amounts of computational resources. For example, if asked to classify an instance taken from a bursty stream, we may have from milliseconds to minutes to return a class prediction. For such problems an anytime algorithm may be especially useful. In this work we show how we can convert the ubiquitous nearest neighbor classifier into an anytime algorithm that can produce an instant classification, or if given the luxury of additional time, can utilize the extra time to increase classification accuracy. We demonstrate the utility of our approach with a comprehensive set of experiments on data from diverse domains.","PeriodicalId":356443,"journal":{"name":"Sixth International Conference on Data Mining (ICDM'06)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"115","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sixth International Conference on Data Mining (ICDM'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2006.21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 115

Abstract

For many real world problems we must perform classification under widely varying amounts of computational resources. For example, if asked to classify an instance taken from a bursty stream, we may have from milliseconds to minutes to return a class prediction. For such problems an anytime algorithm may be especially useful. In this work we show how we can convert the ubiquitous nearest neighbor classifier into an anytime algorithm that can produce an instant classification, or if given the luxury of additional time, can utilize the extra time to increase classification accuracy. We demonstrate the utility of our approach with a comprehensive set of experiments on data from diverse domains.
基于最近邻算法的任意时间分类及其在流挖掘中的应用
对于许多现实世界的问题,我们必须在大量不同的计算资源下执行分类。例如,如果要求对从突发流中获取的实例进行分类,我们可能有几毫秒到几分钟的时间来返回类预测。对于这类问题,随时算法可能特别有用。在这项工作中,我们展示了如何将无处不在的最近邻分类器转换为可以产生即时分类的任何时间算法,或者如果给予额外的时间,可以利用额外的时间来提高分类精度。我们通过对来自不同领域的数据进行一组全面的实验来证明我们的方法的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信