{"title":"Constrained Assortment Optimization Under the Mixed Logit Model with Design Options","authors":"K. Haase, Sven Müller","doi":"10.2139/ssrn.3624816","DOIUrl":null,"url":null,"abstract":"We present the constrained assortment optimization problem under the mixed logit model (MXL) with design options and deterministic customer segments. The rationale is to select a subset of products of a given size and decide on the attributes of each product such that a function of market share is maximized. The customer demand is modeled by MXL. We develop a novel mixed-integer non-linear program and solve it by state-of-the-art generic solvers. To reduce variance in sample average approximation systematic numbers are applied instead of pseudo-random numbers. Our numerical results demonstrate that systematic numbers reduce computational effort by 70%. We solve instances up to 20 customer segments, 100 products each with 50 design options yielding 5,000 product-design combinations, and 500 random realizations in under two minutes. Our approach studies the impact of market position, willingness-to-pay, and bundling strategies on the optimal assortment.","PeriodicalId":275253,"journal":{"name":"Operations Research eJournal","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Operations Research eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3624816","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We present the constrained assortment optimization problem under the mixed logit model (MXL) with design options and deterministic customer segments. The rationale is to select a subset of products of a given size and decide on the attributes of each product such that a function of market share is maximized. The customer demand is modeled by MXL. We develop a novel mixed-integer non-linear program and solve it by state-of-the-art generic solvers. To reduce variance in sample average approximation systematic numbers are applied instead of pseudo-random numbers. Our numerical results demonstrate that systematic numbers reduce computational effort by 70%. We solve instances up to 20 customer segments, 100 products each with 50 design options yielding 5,000 product-design combinations, and 500 random realizations in under two minutes. Our approach studies the impact of market position, willingness-to-pay, and bundling strategies on the optimal assortment.