{"title":"Small Object Detection in Remote Sensing Images Based on Window Self-Attention Mechanism","authors":"Jiaxin Xu, Qiao Zhang, Yu Liu, Mengting Zheng","doi":"10.14358/pers.23-00004r3","DOIUrl":null,"url":null,"abstract":"For remorte sensing image object detection tasks in the small object feature, extraction ability is insufficient and difficult to locate, and other problems. This paper proposes an improved algorithm for small object detection in remote sensing images based on a window self-attention\n mechanism. On the basis of You Only Look Once (YOLO)v5s, a shallow feature extraction layer with four times downsampling is added to the feature fusion pyramid and the window self-attention mechanism is added to the Path Aggregation Network. Experiments show that the improved model obtained\n the Mean Average Precision (mAP) of 78.3% and 91.8% on the DIOR and Remote Sensing Object Detection public data sets with frames per second of 65 and 51, respectively. Compared with the basal YOLOv5s network, the mAP has improved by 5.8% and 3.3%, respectively. Compared with other object detection\n methods, the detection accuracy and real-time performance have been improved.","PeriodicalId":211256,"journal":{"name":"Photogrammetric Engineering & Remote Sensing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photogrammetric Engineering & Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14358/pers.23-00004r3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
For remorte sensing image object detection tasks in the small object feature, extraction ability is insufficient and difficult to locate, and other problems. This paper proposes an improved algorithm for small object detection in remote sensing images based on a window self-attention
mechanism. On the basis of You Only Look Once (YOLO)v5s, a shallow feature extraction layer with four times downsampling is added to the feature fusion pyramid and the window self-attention mechanism is added to the Path Aggregation Network. Experiments show that the improved model obtained
the Mean Average Precision (mAP) of 78.3% and 91.8% on the DIOR and Remote Sensing Object Detection public data sets with frames per second of 65 and 51, respectively. Compared with the basal YOLOv5s network, the mAP has improved by 5.8% and 3.3%, respectively. Compared with other object detection
methods, the detection accuracy and real-time performance have been improved.
对于遥感图像目标检测任务中存在的小目标特征、提取能力不足、难以定位等问题。提出了一种基于窗口自关注机制的遥感图像小目标检测改进算法。在YOLO (You Only Look Once)v5s的基础上,在特征融合金字塔中增加了四次下采样的浅层特征提取层,在路径聚合网络中增加了窗口自关注机制。实验表明,在每秒帧数为65帧的DIOR和每秒帧数为51帧的遥感目标检测公开数据集上,改进模型的Mean Average Precision (mAP)分别达到78.3%和91.8%。与基础YOLOv5s网络相比,mAP分别提高了5.8%和3.3%。与其他目标检测方法相比,提高了检测精度和实时性。