Online Weak-form Sparse Identification of Partial Differential Equations

D. Messenger, E. Dall’Anese, D. Bortz
{"title":"Online Weak-form Sparse Identification of Partial Differential Equations","authors":"D. Messenger, E. Dall’Anese, D. Bortz","doi":"10.48550/arXiv.2203.03979","DOIUrl":null,"url":null,"abstract":"This paper presents an online algorithm for identification of partial differential equations (PDEs) based on the weak-form sparse identification of nonlinear dynamics algorithm (WSINDy). The algorithm is online in a sense that if performs the identification task by processing solution snapshots that arrive sequentially. The core of the method combines a weak-form discretization of candidate PDEs with an online proximal gradient descent approach to the sparse regression problem. In particular, we do not regularize the $\\ell_0$-pseudo-norm, instead finding that directly applying its proximal operator (which corresponds to a hard thresholding) leads to efficient online system identification from noisy data. We demonstrate the success of the method on the Kuramoto-Sivashinsky equation, the nonlinear wave equation with time-varying wavespeed, and the linear wave equation, in one, two, and three spatial dimensions, respectively. In particular, our examples show that the method is capable of identifying and tracking systems with coefficients that vary abruptly in time, and offers a streaming alternative to problems in higher dimensions.","PeriodicalId":189279,"journal":{"name":"Mathematical and Scientific Machine Learning","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical and Scientific Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2203.03979","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

This paper presents an online algorithm for identification of partial differential equations (PDEs) based on the weak-form sparse identification of nonlinear dynamics algorithm (WSINDy). The algorithm is online in a sense that if performs the identification task by processing solution snapshots that arrive sequentially. The core of the method combines a weak-form discretization of candidate PDEs with an online proximal gradient descent approach to the sparse regression problem. In particular, we do not regularize the $\ell_0$-pseudo-norm, instead finding that directly applying its proximal operator (which corresponds to a hard thresholding) leads to efficient online system identification from noisy data. We demonstrate the success of the method on the Kuramoto-Sivashinsky equation, the nonlinear wave equation with time-varying wavespeed, and the linear wave equation, in one, two, and three spatial dimensions, respectively. In particular, our examples show that the method is capable of identifying and tracking systems with coefficients that vary abruptly in time, and offers a streaming alternative to problems in higher dimensions.
偏微分方程的在线弱形式稀疏辨识
基于非线性动力学算法的弱形式稀疏辨识,提出了一种在线辨识偏微分方程的算法。从某种意义上说,该算法是在线的,它通过处理顺序到达的解决方案快照来执行识别任务。该方法的核心是将候选偏微分方程的弱形式离散化与稀疏回归问题的在线近端梯度下降方法相结合。特别是,我们没有正则化$\ell_0$-伪范数,而是发现直接应用它的近端算子(对应于硬阈值)可以从噪声数据中有效地在线识别系统。我们分别在一维、二维和三维空间上证明了该方法在Kuramoto-Sivashinsky方程、时变波速非线性波动方程和线性波动方程上的成功。特别是,我们的例子表明,该方法能够识别和跟踪系数随时间突然变化的系统,并为高维问题提供了一种流替代方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信