Identification of motion with echo state network

K. Ishu, T. Van Der Zant, V. Becanovic, P. Ploger
{"title":"Identification of motion with echo state network","authors":"K. Ishu, T. Van Der Zant, V. Becanovic, P. Ploger","doi":"10.1109/OCEANS.2004.1405751","DOIUrl":null,"url":null,"abstract":"Echo State Networks (ESNs) use a recurrent artificial neural network as a reservoir. Finding a good one depends on choosing the right parameters for the generation of the reservoir, intuition and luck. The method proposed in this article eliminates the need for the tuning by hand by replacing it with a double evolutionary computation. First a broad search to find the right parameters which generate the reservoir is used. Then a search directly on the connectivity matrices fine-tunes the ESN. Both steps show improvements over other known methods for an experimental limit-cycle dataset of the Twin-Burger underwater robot.","PeriodicalId":390971,"journal":{"name":"Oceans '04 MTS/IEEE Techno-Ocean '04 (IEEE Cat. No.04CH37600)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"73","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oceans '04 MTS/IEEE Techno-Ocean '04 (IEEE Cat. No.04CH37600)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/OCEANS.2004.1405751","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 73

Abstract

Echo State Networks (ESNs) use a recurrent artificial neural network as a reservoir. Finding a good one depends on choosing the right parameters for the generation of the reservoir, intuition and luck. The method proposed in this article eliminates the need for the tuning by hand by replacing it with a double evolutionary computation. First a broad search to find the right parameters which generate the reservoir is used. Then a search directly on the connectivity matrices fine-tunes the ESN. Both steps show improvements over other known methods for an experimental limit-cycle dataset of the Twin-Burger underwater robot.
基于回波状态网络的运动识别
回声状态网络(ESNs)使用循环人工神经网络作为储层。找到一个好的模型取决于为储层的生成选择正确的参数,直觉和运气。本文提出的方法通过用双重进化计算代替手工调优,从而消除了手工调优的需要。首先进行广泛的搜索,以找到产生储层的正确参数。然后直接在连通性矩阵上搜索,微调ESN。对于Twin-Burger水下机器人的实验极限环数据集,这两个步骤都显示了比其他已知方法的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信