Sunfall: A Collaborative Visual Analytics System for Astrophysics

C. Aragon, Stephen Bailey, S. Poon, K. Runge, R. Thomas
{"title":"Sunfall: A Collaborative Visual Analytics System for Astrophysics","authors":"C. Aragon, Stephen Bailey, S. Poon, K. Runge, R. Thomas","doi":"10.1109/VAST.2007.4389026","DOIUrl":null,"url":null,"abstract":"Computational and experimental sciences produce and collect ever- larger and complex datasets, often in large-scale, multi-institution projects. The inability to gain insight into complex scientific phenomena using current software tools is a bottleneck facing virtually all endeavors of science. In this paper, we introduce Sunfall, a collaborative visual analytics system developed for the Nearby Supernova Factory, an international astrophysics experiment and the largest data volume supernova search currently in operation. Sunfall utilizes novel interactive visualization and analysis techniques to facilitate deeper scientific insight into complex, noisy, high-dimensional, high-volume, time-critical data. The system combines novel image processing algorithms, statistical analysis, and machine learning with highly interactive visual interfaces to enable collaborative, user-driven scientific exploration of supernova image and spectral data. Sunfall is currently in operation at the Nearby Supernova Factory; it is the first visual analytics system in production use at a major astrophysics project.","PeriodicalId":227910,"journal":{"name":"2007 IEEE Symposium on Visual Analytics Science and Technology","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Symposium on Visual Analytics Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VAST.2007.4389026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

Computational and experimental sciences produce and collect ever- larger and complex datasets, often in large-scale, multi-institution projects. The inability to gain insight into complex scientific phenomena using current software tools is a bottleneck facing virtually all endeavors of science. In this paper, we introduce Sunfall, a collaborative visual analytics system developed for the Nearby Supernova Factory, an international astrophysics experiment and the largest data volume supernova search currently in operation. Sunfall utilizes novel interactive visualization and analysis techniques to facilitate deeper scientific insight into complex, noisy, high-dimensional, high-volume, time-critical data. The system combines novel image processing algorithms, statistical analysis, and machine learning with highly interactive visual interfaces to enable collaborative, user-driven scientific exploration of supernova image and spectral data. Sunfall is currently in operation at the Nearby Supernova Factory; it is the first visual analytics system in production use at a major astrophysics project.
Sunfall:天体物理学的协同可视化分析系统
计算科学和实验科学产生和收集越来越大和复杂的数据集,通常是在大型的、多机构的项目中。使用当前的软件工具无法洞察复杂的科学现象,这是几乎所有科学努力面临的瓶颈。本文介绍了为“附近超新星工厂”开发的协同可视化分析系统Sunfall,这是一项国际天体物理实验,也是目前正在运行的数据量最大的超新星搜索。Sunfall利用新颖的交互式可视化和分析技术,促进对复杂、嘈杂、高维、大容量、时间关键数据的更深入的科学洞察。该系统将新颖的图像处理算法、统计分析和机器学习与高度交互的视觉界面相结合,实现对超新星图像和光谱数据的协作、用户驱动的科学探索。Sunfall目前正在附近的超新星工厂运行;这是第一个用于重大天体物理项目的可视化分析系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信