A novel method of mapping semantic gap to classify natural images

Xiao Ping, Shi Yuexiang, Xie Wenlan
{"title":"A novel method of mapping semantic gap to classify natural images","authors":"Xiao Ping, Shi Yuexiang, Xie Wenlan","doi":"10.1109/IASP.2009.5054607","DOIUrl":null,"url":null,"abstract":"There exists an enormous gap between low-level visual feature and high-level semantic information, and the accuracy of content-based image classification and retrieval depends greatly on the description of low-level visual features. A novel method of mapping semantic gap is presented in this paper, which first extracts color and texture features from images after adaptive thresholding segmentation. Then, we use the BP neural network to map low-features to high-level semantic features. Experimental results show the efficacy of the proposed system.","PeriodicalId":143959,"journal":{"name":"2009 International Conference on Image Analysis and Signal Processing","volume":"120 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Image Analysis and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IASP.2009.5054607","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

There exists an enormous gap between low-level visual feature and high-level semantic information, and the accuracy of content-based image classification and retrieval depends greatly on the description of low-level visual features. A novel method of mapping semantic gap is presented in this paper, which first extracts color and texture features from images after adaptive thresholding segmentation. Then, we use the BP neural network to map low-features to high-level semantic features. Experimental results show the efficacy of the proposed system.
一种映射语义间隙的自然图像分类新方法
低级视觉特征与高级语义信息之间存在着巨大的差距,基于内容的图像分类与检索的准确性很大程度上取决于低级视觉特征的描述。提出了一种新的语义缺口映射方法,该方法首先对图像进行自适应阈值分割,提取图像的颜色和纹理特征。然后,我们使用BP神经网络将低级特征映射到高级语义特征。实验结果表明了该系统的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信