{"title":"An Adaptive Maximum Likelihood Sequence Estimation Technique for Wideband HF Communications","authors":"S. Crozier, K. Tiedemann, R. Lyons, J. Lodge","doi":"10.1109/MILCOM.1982.4805971","DOIUrl":null,"url":null,"abstract":"Performance is presented for a non-real-time (NRT) software coherent binary phase shift keyed (BPSK) receiver using both simulated and recorded HF signals at a bit rate of 2.4 kbps. The receiver consists of: (1) an adaptive matched filter, (2) a maximum likelihood sequence estimator (MLSE) incorporating a modified Viterbi algorithm (MVA), (3) a maximum likelihood (in nature) channel estimator (MLCE) algorithm based on a discrete multipath channel model. For all simulated fixed and time-varying channels, performance is presented in terms of bit error rate (BER) versus average Eb/No. Examples of channel acquisition and tracking are also presented. For the recorded HF signals, performance is presented in terms of BER and availability measures. The implementation of a 2.4 kbps modem suitable for military HF communications applications based on maximum likelihood principles is given preliminary consideration.","PeriodicalId":179832,"journal":{"name":"MILCOM 1982 - IEEE Military Communications Conference - Progress in Spread Spectrum Communications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1982-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MILCOM 1982 - IEEE Military Communications Conference - Progress in Spread Spectrum Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MILCOM.1982.4805971","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
Performance is presented for a non-real-time (NRT) software coherent binary phase shift keyed (BPSK) receiver using both simulated and recorded HF signals at a bit rate of 2.4 kbps. The receiver consists of: (1) an adaptive matched filter, (2) a maximum likelihood sequence estimator (MLSE) incorporating a modified Viterbi algorithm (MVA), (3) a maximum likelihood (in nature) channel estimator (MLCE) algorithm based on a discrete multipath channel model. For all simulated fixed and time-varying channels, performance is presented in terms of bit error rate (BER) versus average Eb/No. Examples of channel acquisition and tracking are also presented. For the recorded HF signals, performance is presented in terms of BER and availability measures. The implementation of a 2.4 kbps modem suitable for military HF communications applications based on maximum likelihood principles is given preliminary consideration.