Deep convolutional neural network for detection of pathological speech

L. Vavrek, Matej Hires, D. Kumar, P. Drotár
{"title":"Deep convolutional neural network for detection of pathological speech","authors":"L. Vavrek, Matej Hires, D. Kumar, P. Drotár","doi":"10.1109/SAMI50585.2021.9378656","DOIUrl":null,"url":null,"abstract":"This paper describes the investigation of the use of the deep neural networks (DNN) for the detection of pathological speech. The state-of-the-art VGG16 convolutional neural network based transfer learning was the basis of this work and different approaches were trialed. We tested the different architectures using the Saarbrucken Voice database (SVD). To overcome limitations due to language and education, the SVD was limited to /a/, /i/ and /u/ vowel subsets with sustained natural pitch. The scope of this study was only diseases that classify as organic dysphonia. We utilized multiple simple networks trained separately on different vowel subsets and combined them as a single model ensemble. It was found that model ensemble achieved an accuracy on pathological speech detection of 82 %. Thus, our results show that pre-trained convolutional neural networks can be used for transfer learning when input is the spectrogram representation of the voice signal. This is significant because it overcomes the need for very large data size that is required to train DNN, and is suitable for computerized analysis of the speech without limitation of the language skills of the patients.","PeriodicalId":402414,"journal":{"name":"2021 IEEE 19th World Symposium on Applied Machine Intelligence and Informatics (SAMI)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 19th World Symposium on Applied Machine Intelligence and Informatics (SAMI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAMI50585.2021.9378656","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper describes the investigation of the use of the deep neural networks (DNN) for the detection of pathological speech. The state-of-the-art VGG16 convolutional neural network based transfer learning was the basis of this work and different approaches were trialed. We tested the different architectures using the Saarbrucken Voice database (SVD). To overcome limitations due to language and education, the SVD was limited to /a/, /i/ and /u/ vowel subsets with sustained natural pitch. The scope of this study was only diseases that classify as organic dysphonia. We utilized multiple simple networks trained separately on different vowel subsets and combined them as a single model ensemble. It was found that model ensemble achieved an accuracy on pathological speech detection of 82 %. Thus, our results show that pre-trained convolutional neural networks can be used for transfer learning when input is the spectrogram representation of the voice signal. This is significant because it overcomes the need for very large data size that is required to train DNN, and is suitable for computerized analysis of the speech without limitation of the language skills of the patients.
基于深度卷积神经网络的病理语音检测
本文描述了使用深度神经网络(DNN)进行病理语音检测的研究。最先进的基于VGG16卷积神经网络的迁移学习是这项工作的基础,并尝试了不同的方法。我们使用Saarbrucken Voice数据库(SVD)测试了不同的体系结构。为了克服语言和教育的限制,SVD仅限于具有持续自然音高的/a/, /i/和/u/元音子集。这项研究的范围仅限于被归类为器质性发声障碍的疾病。我们利用在不同的元音子集上单独训练的多个简单网络,并将它们组合成一个单一的模型集合。结果表明,模型集成对病理语音检测的准确率达到82%。因此,我们的研究结果表明,当输入是语音信号的谱图表示时,预训练的卷积神经网络可以用于迁移学习。这一点很重要,因为它克服了训练深度神经网络所需的非常大的数据量的需要,并且适合于在不限制患者语言技能的情况下对语音进行计算机分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信