Modeling vocal interaction for text-independent detection of involvement hotspots in multi-party meetings

K. Laskowski
{"title":"Modeling vocal interaction for text-independent detection of involvement hotspots in multi-party meetings","authors":"K. Laskowski","doi":"10.1109/SLT.2008.4777845","DOIUrl":null,"url":null,"abstract":"Indexing, retrieval, and summarization in recordings of meetings have, to date, focused largely on the propositional content of what participants say. Although objectively relevant, such content may not be the sole or even the main aim of potential system users. Instead, users may be interested in information bearing on conversation flow. We explore the automatic detection of one example of such information, namely that of hotspots defined in terms of participant involvement. Our proposed system relies exclusively on low-level vocal activity features, and yields a classification accuracy of 84%, representing a 39% reduction of error relative to a baseline which selects the majority class.","PeriodicalId":186876,"journal":{"name":"2008 IEEE Spoken Language Technology Workshop","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE Spoken Language Technology Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLT.2008.4777845","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

Indexing, retrieval, and summarization in recordings of meetings have, to date, focused largely on the propositional content of what participants say. Although objectively relevant, such content may not be the sole or even the main aim of potential system users. Instead, users may be interested in information bearing on conversation flow. We explore the automatic detection of one example of such information, namely that of hotspots defined in terms of participant involvement. Our proposed system relies exclusively on low-level vocal activity features, and yields a classification accuracy of 84%, representing a 39% reduction of error relative to a baseline which selects the majority class.
基于文本独立的多方会议参与热点检测的语音交互建模
迄今为止,会议记录的索引、检索和摘要主要集中在与会者发言的命题内容上。虽然客观上是相关的,但这些内容可能不是潜在系统用户的唯一目标,甚至不是主要目标。相反,用户可能对会话流中的信息感兴趣。我们探索自动检测此类信息的一个例子,即根据参与者参与定义的热点。我们提出的系统完全依赖于低级的声音活动特征,并产生了84%的分类准确率,相对于选择大多数类别的基线减少了39%的误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信