Human visual system based mammogram enhancement and analysis

Yicong Zhou, K. Panetta, S. Agaian
{"title":"Human visual system based mammogram enhancement and analysis","authors":"Yicong Zhou, K. Panetta, S. Agaian","doi":"10.1109/IPTA.2010.5586759","DOIUrl":null,"url":null,"abstract":"This paper introduces a new mammogram enhancement algorithm using the human visual system (HVS) based image decomposition. A new enhancement measure based on the second derivative is also introduced to measure and assess the enhancement performance. Experimental results show that the presented algorithm can improve the visual quality of fine details in mammograms. The HVS-based image decomposition can segment the regions/objects from their surroundings. It offers the users flexibility to enhance either sub-images containing only significant illumination information or all the sub-images of the original mammograms. The algorithm can be used in the computer-aided diagnosis systems for breast cancer detection.","PeriodicalId":236574,"journal":{"name":"2010 2nd International Conference on Image Processing Theory, Tools and Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 2nd International Conference on Image Processing Theory, Tools and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPTA.2010.5586759","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

Abstract

This paper introduces a new mammogram enhancement algorithm using the human visual system (HVS) based image decomposition. A new enhancement measure based on the second derivative is also introduced to measure and assess the enhancement performance. Experimental results show that the presented algorithm can improve the visual quality of fine details in mammograms. The HVS-based image decomposition can segment the regions/objects from their surroundings. It offers the users flexibility to enhance either sub-images containing only significant illumination information or all the sub-images of the original mammograms. The algorithm can be used in the computer-aided diagnosis systems for breast cancer detection.
基于人类视觉系统的乳房x线照片增强与分析
本文介绍了一种新的基于人类视觉系统(HVS)的图像分解的乳房x光增强算法。提出了一种新的基于二阶导数的增强方法来测量和评价增强性能。实验结果表明,该算法可以提高乳房x光片精细细节的视觉质量。基于hvs的图像分解可以将区域/物体从周围环境中分割出来。它为用户提供了灵活性,可以增强只包含重要照明信息的子图像,也可以增强原始乳房x光片的所有子图像。该算法可用于计算机辅助诊断系统中乳腺癌的检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信