Generic oracles and oracle classes

M. Blum, R. Impagliazzo
{"title":"Generic oracles and oracle classes","authors":"M. Blum, R. Impagliazzo","doi":"10.1109/SFCS.1987.30","DOIUrl":null,"url":null,"abstract":"In this paper, we examine various complexity issues relative to an oracle for a generic set in order to determine which are the more \"natural\" conjectures for these issues. Generic oracle results should be viewed as parallels to random oracle results, as in [BG]; the two are in many ways related, but, as we shall exhibit, not equivalent. Looking at computation relative to a generic oracle is in some ways a better reflection of computation without an oracle; for example, whereas adding a random oracle allows a deterministic polynomial-time machine to solve any problem in BPP, adding a generic oracle will not help solve any recursive problem faster than it could be solved without an oracle. Generic sets were first introduced by Cohen as a tool for proving independence results in set theory [Co]. Their recursion theoretic properties have also been explored in depth; for example, see [J] and [Ku2]. Some related work using forcing and/or generic sets as tools in oracle constructions can be found in [Ku3], [Do], [P], and [A-SFH]. However, this is to our knowledge the first knowledge the first thorough examination of complexity relative to a generic Oracle.","PeriodicalId":153779,"journal":{"name":"28th Annual Symposium on Foundations of Computer Science (sfcs 1987)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1987-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"147","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"28th Annual Symposium on Foundations of Computer Science (sfcs 1987)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFCS.1987.30","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 147

Abstract

In this paper, we examine various complexity issues relative to an oracle for a generic set in order to determine which are the more "natural" conjectures for these issues. Generic oracle results should be viewed as parallels to random oracle results, as in [BG]; the two are in many ways related, but, as we shall exhibit, not equivalent. Looking at computation relative to a generic oracle is in some ways a better reflection of computation without an oracle; for example, whereas adding a random oracle allows a deterministic polynomial-time machine to solve any problem in BPP, adding a generic oracle will not help solve any recursive problem faster than it could be solved without an oracle. Generic sets were first introduced by Cohen as a tool for proving independence results in set theory [Co]. Their recursion theoretic properties have also been explored in depth; for example, see [J] and [Ku2]. Some related work using forcing and/or generic sets as tools in oracle constructions can be found in [Ku3], [Do], [P], and [A-SFH]. However, this is to our knowledge the first knowledge the first thorough examination of complexity relative to a generic Oracle.
通用的oracle和oracle类
在本文中,我们研究了与泛型集的oracle相关的各种复杂性问题,以确定哪些是对这些问题更“自然”的猜测。通用oracle结果应该被视为与随机oracle结果平行,如[BG];这两者在许多方面是相关的,但是,正如我们将要说明的,它们并不等同。在某种程度上,与通用oracle相对的计算可以更好地反映没有oracle的计算;例如,添加随机oracle允许确定性多项式时间机解决BPP中的任何问题,而添加通用oracle并不会比不使用oracle更快地解决任何递归问题。泛型集最初是由Cohen作为证明集合论中独立性结果的工具引入的[Co]。深入探讨了它们的递归理论性质;例如,参见[J]和[Ku2]。在[Ku3], [Do], [P]和[A-SFH]中可以找到一些使用强制集和/或通用集作为oracle构建工具的相关工作。然而,据我们所知,这是第一次对通用Oracle的复杂性进行彻底的检查。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信