{"title":"Measuring Productivity When Technologies are Heterogeneous: A Semi-Parametric Approach for Electricity Generation","authors":"S. Seifert","doi":"10.2139/ssrn.2698067","DOIUrl":null,"url":null,"abstract":"While productivity growth in electricity generation is associated with multiple positive effects from an economic and environmental perspective, measuring it is challenging. This paper proposes a framework to estimate and decompose productivity growth for a sector characterized by multiple technologies. Using a metafrontier Malmquist decomposition and frontier estimation based on stochastic non-smooth envelopment of data (StoNED) allows for productivity estimation with few microeconomic assumptions. Additionally, evaluation of productivity at representative hypothetical units permits distribution-free analysis for the whole distribution of power plant sizes. The proposed framework is used to analyze a unique and rich dataset of coal, lignite, gas, and biomass-fired generators operating in Germany from 2003 to 2010. The results indicate stagnating productivity for the sector as a whole, technical progress for biomass plants, and very high productivity for gas-fired plants.","PeriodicalId":264857,"journal":{"name":"ERN: Semiparametric & Nonparametric Methods (Topic)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Semiparametric & Nonparametric Methods (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2698067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
While productivity growth in electricity generation is associated with multiple positive effects from an economic and environmental perspective, measuring it is challenging. This paper proposes a framework to estimate and decompose productivity growth for a sector characterized by multiple technologies. Using a metafrontier Malmquist decomposition and frontier estimation based on stochastic non-smooth envelopment of data (StoNED) allows for productivity estimation with few microeconomic assumptions. Additionally, evaluation of productivity at representative hypothetical units permits distribution-free analysis for the whole distribution of power plant sizes. The proposed framework is used to analyze a unique and rich dataset of coal, lignite, gas, and biomass-fired generators operating in Germany from 2003 to 2010. The results indicate stagnating productivity for the sector as a whole, technical progress for biomass plants, and very high productivity for gas-fired plants.