Crime Prediction using Machine Learning

Sankalp Singh, Akshay Gole, Prathmesh Kanherkar, P. Abhishek, Pallavi Wankhede
{"title":"Crime Prediction using Machine Learning","authors":"Sankalp Singh, Akshay Gole, Prathmesh Kanherkar, P. Abhishek, Pallavi Wankhede","doi":"10.1109/ICETEMS56252.2022.10093303","DOIUrl":null,"url":null,"abstract":"Crime is one of the world’s most serious problems, affecting people’s daily lives, whether they are travelling home from work or going on a trip. The situation in Vancouver is the same. This paper focuses on forecasting crime-prone areas (using the XGBOOST algorithm) based on data currently available for that area. Along with prediction, we built it so that the crime hotspots for any date, month, year, and time combination can display on a Google map, making the work of the governing agency easier and more efficient, helping to reduce Vancouver’s crime rate.","PeriodicalId":170905,"journal":{"name":"2022 International Conference on Emerging Trends in Engineering and Medical Sciences (ICETEMS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Emerging Trends in Engineering and Medical Sciences (ICETEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICETEMS56252.2022.10093303","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Crime is one of the world’s most serious problems, affecting people’s daily lives, whether they are travelling home from work or going on a trip. The situation in Vancouver is the same. This paper focuses on forecasting crime-prone areas (using the XGBOOST algorithm) based on data currently available for that area. Along with prediction, we built it so that the crime hotspots for any date, month, year, and time combination can display on a Google map, making the work of the governing agency easier and more efficient, helping to reduce Vancouver’s crime rate.
使用机器学习进行犯罪预测
犯罪是世界上最严重的问题之一,影响着人们的日常生活,无论他们是下班回家还是去旅行。温哥华的情况也是如此。本文的重点是基于该地区目前可用的数据预测犯罪易发地区(使用XGBOOST算法)。除了预测之外,我们还建立了它,以便在谷歌地图上显示任何日期、月份、年份和时间组合的犯罪热点,使管理机构的工作更容易、更有效,有助于降低温哥华的犯罪率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信