Malaria Parasite Classification using Deep Convolutional Neural Network

Abhik Paul, R. Bania
{"title":"Malaria Parasite Classification using Deep Convolutional Neural Network","authors":"Abhik Paul, R. Bania","doi":"10.1109/iccica52458.2021.9697307","DOIUrl":null,"url":null,"abstract":"Malaria is one of the life-threatening diseases which spread by the Plasmodium parasites. Traditionally, microscopists analyze the microscopic blood smear images but it is time consuming and may leads to false negatives. Automated detection of malaria from the thin blood smear slide images is a challenging task. However, in the domain of medical and healthcare applications, classification accuracy plays a vital role. The higher level of false negatives in medical diagnosis systems may raise the risk of the patients by not employing the required treatment they exactly need. In this article, we have developed three Convolution Neural Network (CNN) models for the prediction of malaria from the red blood cell images into infected parasite red blood cells and uninfected parasite red blood cells. Finally, out of the three setups, proposed CNN setup-1 with kernel size 3 x 3 and pool size of 2 x 2 achieved an accuracy of 96%.","PeriodicalId":327193,"journal":{"name":"2021 International Conference on Computational Intelligence and Computing Applications (ICCICA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Computational Intelligence and Computing Applications (ICCICA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iccica52458.2021.9697307","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Malaria is one of the life-threatening diseases which spread by the Plasmodium parasites. Traditionally, microscopists analyze the microscopic blood smear images but it is time consuming and may leads to false negatives. Automated detection of malaria from the thin blood smear slide images is a challenging task. However, in the domain of medical and healthcare applications, classification accuracy plays a vital role. The higher level of false negatives in medical diagnosis systems may raise the risk of the patients by not employing the required treatment they exactly need. In this article, we have developed three Convolution Neural Network (CNN) models for the prediction of malaria from the red blood cell images into infected parasite red blood cells and uninfected parasite red blood cells. Finally, out of the three setups, proposed CNN setup-1 with kernel size 3 x 3 and pool size of 2 x 2 achieved an accuracy of 96%.
基于深度卷积神经网络的疟疾寄生虫分类
疟疾是由疟原虫传播的一种威胁生命的疾病。传统上,显微镜对血液涂片图像进行分析是一种耗时且容易产生假阴性的方法。从薄血涂片图像中自动检测疟疾是一项具有挑战性的任务。然而,在医疗保健应用领域,分类精度起着至关重要的作用。医疗诊断系统中较高水平的假阴性可能会增加患者的风险,因为他们没有采用他们真正需要的所需治疗。在本文中,我们开发了三种卷积神经网络(CNN)模型,用于从红细胞图像到感染寄生虫红细胞和未感染寄生虫红细胞的疟疾预测。最后,在这三种设置中,提出的CNN setup-1内核大小为3 × 3,池大小为2 × 2,准确率达到96%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信