Creating a Labeled Dataset for Medical Misinformation in Health Forums

Alexander Kinsora, Kate Barron, Q. Mei, V.G.Vinod Vydiswaran
{"title":"Creating a Labeled Dataset for Medical Misinformation in Health Forums","authors":"Alexander Kinsora, Kate Barron, Q. Mei, V.G.Vinod Vydiswaran","doi":"10.1109/ICHI.2017.93","DOIUrl":null,"url":null,"abstract":"The dissemination of medical misinformation online presents a challenge to human health. Machine learning techniques provide a unique opportunity for decreasing the cognitive load associated with deciding upon whether any given user comment is likely to contain misinformation, but a paucity of labeled data of medical misinformation makes supervised approaches a challenge. In order to ameliorate this condition, we present a new labeled dataset of misinformative and non-misinformative comments developed over posted questions and comments on a health discussion forum. This required extraction of candidate misinformative entries from the corpus using information retrieval techniques, development of a codex and labeling strategy for the dataset, and the creation of features for use in machine learning tasks. By identifying the nine most descriptive features with regard to classification as misinformative or non-misinformative through the use of Recursive Feature Elimination, we achieved a classification accuracy of 90.1%, where the dataset is comprised 85.8% of non-misinformative comments. In our opinion, this dataset and analysis will aid the machine learning community in the development of an online misinformation classification system over user-generated content such as medical forum posts.","PeriodicalId":263611,"journal":{"name":"2017 IEEE International Conference on Healthcare Informatics (ICHI)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Healthcare Informatics (ICHI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICHI.2017.93","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

Abstract

The dissemination of medical misinformation online presents a challenge to human health. Machine learning techniques provide a unique opportunity for decreasing the cognitive load associated with deciding upon whether any given user comment is likely to contain misinformation, but a paucity of labeled data of medical misinformation makes supervised approaches a challenge. In order to ameliorate this condition, we present a new labeled dataset of misinformative and non-misinformative comments developed over posted questions and comments on a health discussion forum. This required extraction of candidate misinformative entries from the corpus using information retrieval techniques, development of a codex and labeling strategy for the dataset, and the creation of features for use in machine learning tasks. By identifying the nine most descriptive features with regard to classification as misinformative or non-misinformative through the use of Recursive Feature Elimination, we achieved a classification accuracy of 90.1%, where the dataset is comprised 85.8% of non-misinformative comments. In our opinion, this dataset and analysis will aid the machine learning community in the development of an online misinformation classification system over user-generated content such as medical forum posts.
为健康论坛中的医疗错误信息创建标记数据集
医疗错误信息在网上的传播对人类健康构成挑战。机器学习技术为减少与决定任何给定用户评论是否可能包含错误信息相关的认知负荷提供了独特的机会,但是缺乏医学错误信息的标记数据使得监督方法面临挑战。为了改善这种情况,我们提出了一个新的标记数据集,该数据集是根据健康讨论论坛上发布的问题和评论开发的错误和非错误评论。这需要使用信息检索技术从语料库中提取候选的错误信息条目,开发数据集的索引和标记策略,以及创建用于机器学习任务的特征。通过使用递归特征消除(Recursive Feature Elimination)识别关于错误信息或非错误信息分类的9个最具描述性的特征,我们实现了90.1%的分类准确率,其中数据集由85.8%的非错误评论组成。在我们看来,该数据集和分析将有助于机器学习社区开发针对用户生成内容(如医疗论坛帖子)的在线错误信息分类系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信