{"title":"A Reverse Bearings Only Target Motion Analysis (BO-TMA) for improving AUV navigation accuracy","authors":"Talmon Alexandri, R. Diamant","doi":"10.1109/WPNC.2016.7822842","DOIUrl":null,"url":null,"abstract":"We present a partial observable, non-linear solution for AUV aided navigation, referred as the Reverse Bearing Only Target Motion Analysis (Reverse BO-TMA). Reverse BO-TMA utilizes information about the course and speed of a passing vessel to provide a passive method for self localization of an Autonomous Underwater Vehicle (AUV). In Reverse BO-TMA, the AUV relies on radiated noise from the vessel to measure the bearing to the target vessel. Compared to traditional range-based localization methods, Reverse BO-TMA is a fully passive method that allows the AUV to remain farther from the anchor and does not require collaboration or message exchange in the form of time-synchronization between the AUV and the vessel. We formalize the Reverse BO-TMA, and solve it through least squares optimization. Numerical results show that the Reverse BO-TMA provides accurate localization performance that can greatly increase the accuracy of AUV navigation during long term deployments.","PeriodicalId":148664,"journal":{"name":"2016 13th Workshop on Positioning, Navigation and Communications (WPNC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 13th Workshop on Positioning, Navigation and Communications (WPNC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WPNC.2016.7822842","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
We present a partial observable, non-linear solution for AUV aided navigation, referred as the Reverse Bearing Only Target Motion Analysis (Reverse BO-TMA). Reverse BO-TMA utilizes information about the course and speed of a passing vessel to provide a passive method for self localization of an Autonomous Underwater Vehicle (AUV). In Reverse BO-TMA, the AUV relies on radiated noise from the vessel to measure the bearing to the target vessel. Compared to traditional range-based localization methods, Reverse BO-TMA is a fully passive method that allows the AUV to remain farther from the anchor and does not require collaboration or message exchange in the form of time-synchronization between the AUV and the vessel. We formalize the Reverse BO-TMA, and solve it through least squares optimization. Numerical results show that the Reverse BO-TMA provides accurate localization performance that can greatly increase the accuracy of AUV navigation during long term deployments.