{"title":"Cooperative patch-based 3D surface tracking","authors":"M. Klaudiny, A. Hilton","doi":"10.1109/CVMP.2011.14","DOIUrl":null,"url":null,"abstract":"This paper presents a novel dense motion capture technique which creates a temporally consistent mesh sequence from several calibrated and synchronised video sequences of a dynamic object. A surface patch model based on the topology of a user-specified reference mesh is employed to track the surface of the object over time. Multi-view 3D matching of surface patches using a novel cooperative minimisation approach provides initial motion estimates which are robust to large, rapid non-rigid changes of shape. A Laplacian deformation subsequently regularises the motion of the whole mesh using the weighted vertex displacements as soft constraints. An unregistered surface geometry independently reconstructed at each frame is incorporated as a shape prior to improve the quality of tracking. The method is evaluated in a challenging scenario of facial performance capture. Results demonstrate accurate tracking of fast, complex expressions over long sequences without use of markers or a pattern.","PeriodicalId":167135,"journal":{"name":"2011 Conference for Visual Media Production","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Conference for Visual Media Production","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVMP.2011.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12
Abstract
This paper presents a novel dense motion capture technique which creates a temporally consistent mesh sequence from several calibrated and synchronised video sequences of a dynamic object. A surface patch model based on the topology of a user-specified reference mesh is employed to track the surface of the object over time. Multi-view 3D matching of surface patches using a novel cooperative minimisation approach provides initial motion estimates which are robust to large, rapid non-rigid changes of shape. A Laplacian deformation subsequently regularises the motion of the whole mesh using the weighted vertex displacements as soft constraints. An unregistered surface geometry independently reconstructed at each frame is incorporated as a shape prior to improve the quality of tracking. The method is evaluated in a challenging scenario of facial performance capture. Results demonstrate accurate tracking of fast, complex expressions over long sequences without use of markers or a pattern.